LNCS 4126

Second International Summer School 2006
Lisbon, Portugal, September 2006
Tutorial Lectures

Reactive RDF Query Languages

“Relational” RDF Query Languages

— SPARQL

RDFQ
R-DEVICE

Xcerpt
(Syntactic Wb Pattern-based ROF Query Languages

RDF Twig ROF Query Languages with Navigational Access
XSLT / RDFT XsROL
XPadi \<” Versa
) RDF Path, RPath, RePatt

2001 2002 2003 2004

‘ —— swong influence —— extension

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4126

Pedro Barahona Frangois Bry
Enrico Franconi Nicola Henze

Ulrike Sattler (Eds.)

Reasoning Web

Second International Summer School 2006
Lisbon, Portugal, September 4-8, 2006
Tutorial Lectures

@ Springer

Volume Editors

Pedro Barahona
Universidade Nova de Lisboa
2829-516 Caparica, Portugal
E-mail: pb@di.fct.unl.pt

Francois Bry

University of Munich
D-80538 Miinchen,Germany
E-mail: bry @pms.ifi.lmu.de

Enrico Franconi

Free University of Bozen—-Bolzano,
1-39100 Bozen-Bolzano, Italy
E-mail: franconi @inf.unibz.it

Nicola Henze

University of Hannover

D-30167 Hannover, Germany
E-mail: henze @kbs.uni-hannover.de

Ulrike Sattler

University of Manchester
Manchester, UK

E-mail: sattler@cs.man.ac.uk

Library of Congress Control Number: 2006931476

CR Subject Classification (1998): H.4, H.3, C.2, H.5,J.1, K4, K.6,1.2.11

LNCS Sublibrary: SL 3 — Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-38409-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-38409-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11837787 06/3142 543210

Preface

This volume contains the lecture notes of the Summer School “Reasoning Web
2006” (http://reasoningweb.org), which took place on September 4-6, 2006
in Lisbon and was hosted by the New University of Lisbon (Universidade Nova
de Lisboa).

Like the first “Reasoning Web” Summer School (cf. LNCS 3564), which took
place in 2005, the Summer School “Reasoning Web 2006” was organized by
the Network of Excellence REWERSE, “Reasoning on the Web with Rules and
Semantics” (http://rewerse.net),its member “Centre of Artificial Intelligence
(CENTRIA)” at the New University of Lisbon being responsible for the local
organization.

Reasoning is one of the central issues in Semantic Web research and develop-
ment. Indeed, the Semantic Web aims at enhancing today’s Web with semantics-
carrying “meta-data” and reasoning methods. The Semantic Web is a very active
field of research and development, which involves both academia and industry.

The “Reasoning Web” Summer Schools provide a yearly forum for presenting
and discussing recent developments in the “Semantic Web” field. They have a
specical focus on applied reasoning and on applications. They are primarily, but
not only, intended for young researchers, especially PhD students and young
professionals involved in research and/or development in the “Semantic Web”
field.

The programme of the Summer School “Reasoning Web 2006” cover the
following issues:

— Semantic Web Query Languages
Semantic Web Rules and Ontologies

— Bioinformatics and Medical Ontologies
Industrial Aspects

Semantic Web Query Languages. Query languages are expected to become as
important on the Web and on the Semantic Web as they already are in data-
bases. Indeed, many practical applications on today’s Web, and many of the
Semantic Web applications that are expected to emerge, can be seen as in-
formation systems. Query languages ease the retrieval of data from complex
databases or information systems. Query languages for the Web and the Se-
mantic Web are an active area of research: in April 2006 the query language
SPARQL, a query language for the Resource Description Framework RDF, at-
tained the status of a “W3C Candidate Recommendation” (cf. http://www.w3.
org/TR/rdf-sparql-query/); since 2004 a plethora of approaches to querying
RDF have been proposed. The Summer School “Reasoning Web 2006” paid a
tribute to this by including in its programme firstly a presentation of SPARQL
by Bijan Parsia, a member of the “W3C RDF Data Access Working Group”
which develops SPARQL, and secondly a comparative overview by Tim Furche,

VI Preface

Benedikt Linse, Dimitris Plexousakis, Georg Gottlob, and myself of selected
query languages for RDF. This overview deepens and completes a first compar-
ison presented at the Summer School “ReasoningWeb 2005”, which considered
almost all query languages proposed for RDF but in a more superficial manner.

Semantic Web Rules and Ontologies. Rule-based formalisms currently receive
considerable attention from Semantic Web researchers and developers: The W3C,
for example, launched in November 2005 a “Rule Interchange Format (RIF)”
Working Group (cf. http://www.w3.0org/2005/rules/) and many researchers
are now investigating how rule-based reasoning can be applied with XML, RDF,
and/or OWL data. The Summer School “Reasoning Web 2006” therefore of-
fered four complementary lectures on the subject. Two of them, given by Ric-
cardo Rosati and by Thomas Eiter, Giovambattista Ianni, Axel Polleres, Roman
Schindlauer, and Hans Tompits, respectively presented recent approaches to rule-
based reasoning with ontologies. A further lecture by Silvie Spreeuwenberg and
Rik Gerrits was devoted to discussing the commonalities and the differences of
“Business Rules” and “Semantic Web Rules”. A fourth and last lecture on rule-
based formalisms for the Semantic Web by Uwe Afimann, Jendrik Johannes,
Jakob Henriksson, and Ilie Savga showed how modern software composition
methods can be applied to Semantic Web rule languages.

Bioinformatics and Medical Ontologies. Bioinformatics and Medicine are a pre-
mier application field of Semantic Web methods. For this reason, Semantic Web
researchers and developers can learn much from Semantic Web applications in
these fields. The Summer School “Reasoning Web 2006” therefore offered three
complementary lectures on Bioinformatics and Medical Ontologies: A first lec-
ture by Alan Rector and Jeremy Rogers introduced the representation of medical
concepts in the GALEN ontology; a second lecture by Michael Schroeder and
Patrick Lambrix described a basis for a “Semantic Web for the Life Sciences”,
and a third lecture by Ludwig Krippahl was devoted to the integration of Web
data in the prediction of the’ structures and functions of proteins.

Industrial Aspects. Finally, the Summer School “Reasoning Web 2006” offered
a lecture by Alain Léger, Johannes Heinecke, Lyndon J.B. Nixon, Pavel Shvaiko,
Jean Charlet, Paola Hobson, and Frangois Goasdoué on an industrial perspective
of the Semantic Web.

Many persons contributed towards making the Summer School “Reasoning
Web 2006” possible: First and foremost, the above mentioned lecturers; sec-
ond the local organizers, in particular Carlos Viegas Damaésio from the New
University of Lisbon; and finally the programme committee consisting of Pedro
Barahona, New University of Lisbon, Enrico Franconi, Free University of Bozen-
Bolzano, Nicola Henze, University of Hannover, and Ulrike Sattler, University
of Manchester, who all helped me in selecting the Summer School lectures and
assessing their quality. Ulrike Sattler deserves a special mention for having col-
lected the lecture notes and prepared this book. I would also like to mention Jan

Preface VII

Matuszyniski from the University of Link6ping, and Norbert Eisinger from the
University of Munich, coordinator and deputy coordinator of the REWERSE
Working Group “Education and Training” on behalf of which the “Reasoning
Web” Summer Schools are run.

I thank all of them warmly for their work, their dedication, and also for their
lasting patience, which, I am afraid, was tried again and again during the eight
months leading up to the summer school.

June 2006 Francqis Bry

Organization

Programme Committee

Pedro Barahona New University of Lisbon (Portugal)
Francois Bry University of Munich (Germany), chair
Enrico Franconi Free University of Bozen-Bolzano (Italy)
Nicola Henze University of Hannover (Germany)
Ulrike Sattler University of Manchester (UK)

Local Organisation

Carlos Viegas Damédsio New University of Lisbon (Portugal)

Sponsoring Institutions

The Reasoning Web 2006 Summer School is supported by the following organi-
sations:

Fundagdo para a Ciéncia e a Tecnologia, Min- FC I

Fundagio para a Ciéncia e a Tecnologia
MINISTERIO DA CIENCIA, TECNOLOGIA E ENSINO SUPERIOR

istério da Ciéncia e Ensino Superior, Portugal.

N . . . 1 \ Uriversidade Nova de Lisboa
Faculdade de Ciéncias e Tecnologia da Univer- @ Facuidae de Ciancias o Tecnologia
sidade Nova de Lisboa, Portugal.

Network of Excellence REWERSE,
http://rewerse.net reasoning on the web)

Table of Contents

Semantic Web Query Languages

RDF Querying: Language Constructs and Evaluation

Methods Comparedt 1
Tim Furche, Benedikt Linse, Francois Bry, Dimitris Plexousakis,
Georg Gottlob

Querying the Web with SPARQL i 53
Bijan Parsia

Semantic Web Rules and Ontologies

Composition of Rule Sets and Ontologies 68
Uwe Afsmann, Jendrik Johannes, Jakob Henriksson, Ilie Savga

Reasoning with Rules and Ontologies 93
Thomas Fiter, Giovambattista lanni, Axel Polleres,
Roman Schindlauer, Hans Tompits

Integrating Ontologies and Rules: Semantic and Computational
ISsUes ..o 128
Riccardo Rosati

Business Rules in the Semantic Web, Are There Any or Are
They Different?o 152
Silvie Spreeuwenberg, Rik Gerrits

Bioinformatics and Medical Ontologies

Ontologies and Text Mining as a Basis for a Semantic Web for the
Life Sciences 164
Andreas Doms, Vaida Jakoniené, Patrick Lambriz,

Michael Schroeder, Thomas Widachter

Integrating Web Resources to Model Protein Structure
and Function 184
Ludwig Krippahl

Ontological and Practical Issues in Using a Description Logic to
Represent Medical Concept Systems: Experience from GALEN 197
Alan Rector, Jeremy Rogers

XII Table of Contents

Industrial Aspects

The Semantic Web from an Industry Perspective
Alain Léger, Johannes Heinecke, Lyndon J.B.

Nizon, Pavel Shvaiko,

Jean Charlet, Paola Hobson, Francois Goasdoué

Author Index

RDF Querying:
Language Constructs and Evaluation Methods
Compared

Tim Furche!, Benedikt Linse!, Francois Bry!,
Dimitris Plexousakis®?, and Georg Gottlob*

! Institute for Informatics, University of Munich,
Oettingenstrafie 67, 80538 Miinchen, Germany
http://wuw.pms.ifi.lmu.de/

2 Department of Computer Science, University of Crete
Vassilika Vouton, P.O. Box 1385, GR 711 10 Heraklion, Crete, Greece
http://www.ics.forth.gr/isl/people/people_individual. jsp?Person_ID=5
3 Information Systems Laboratory, Institute of Computer Science, FORTH
Vassilika Vouton, P.O. Box 1385, GR 711 10 Heraklion, Crete, Greece
4 Oxford University Computing Laboratory,

Wolfson Building, Parks Road, Oxford, OX1 3QD, England
http://web.comlab.ox.ac.uk/oucl/people/georg.gottlob.html

Abstract. This article is firstly an introduction into query languages
for the Semantic Web, secondly an in-depth comparison of the languages
introduced. Only RDF query languages are considered because, as of
the writing of this paper, query languages for other Semantic Web data
modeling formalisms, especially OWL, are still an open research issue,
and only a very small number of, furthermore incomplete, proposals for
querying Semantic Web data modeled after other formalisms than RDF
exist. The limitation to a few RDF query languages is motivated both
by the objective of an in-depth comparison of the languages addressed
and by space limitations. During the three years before the writing of
this article, more than three dozen proposals for RDF query languages
have been published! Not only such a large number, but also the often
immature nature of the proposals makes the focus on few, but represen-
tative languages a necessary condition for a non-trivial comparison.

For this article, the following RDF query languages have been, admit-
tedly subjectively, selected: Firstly, the “relational” or “pattern-based”
query languages SPARQL, RQL, TRIPLE, and Xcerpt; secondly the
reactive rule query language Algae; thirdly and last the “navigational
access” query language Versa. Although subjective, this choice is ar-
guably a good coverage of the diverse language paradigms considered
for querying RDF data. It is the authors’ hope and expectation, that
this comparison will motivate and trigger further similar studies, thus
completing the present article and overcoming its limitation.

P. Barahona et al. (Eds.): Reasoning Web 2006, LNCS 4126, pp. 1-52, 2006.
(© Springer-Verlag Berlin Heidelberg 2006

2 T. Furche et al.
1 Introduction

Query Answering on the Semantic Web

Query answering is as central to the Semantic Web as it is to the conventional
Web. Indeed, the Web as well as the emerging Semantic Web can be seen as
information systems; and query answering is an essential functionality of any
information system.

The Semantic Web is a research and development endeavor aiming at over-
coming limitations of today’s Web. It has has been described as follows by W3C
founder Tim Berners-Lee, Jim Hendler, and Ora Lassila:

“The Semantic Web will bring structure to the meaningful content of
Web pages, creating an environment where software agents roaming from
page to page can readily carry out sophisticated tasks for users.” [16]

In the Semantic Web, conventional Web data (usually represented in (X)HTML
or other XML formats) is enriched by meta-data (represented, e.g., in RDF,
Topic Maps, OWL) specifying the “meaning” of other data and allowing Web-
based systems to take advantage of “intelligent” reasoning capabilities.

Query answering on the Semantic Web might be seen as more complex than
querying on the conventional Web because the “meaning” conveyed by meta-data
has to be properly “understood” and processed. In particular, query languages
for RDF may convey RDF/S’s semantics as expressed, e.g., by RDF type triples.

Focus of this Article
This article is

1. an introduction into query languages for the Semantic Web;
2. an in-depth comparison of the languages introduced along prominent lan-
guage constructs and concepts.

Only RDF query languages are considered in this article. The reason for this is,
that as of the writing of this paper, query languages for other Semantic Web
data modeling formalisms, especially OWL, still are an open research issue, and
only a very small number of, furthermore incomplete, proposals for querying
Semantic Web data modeled after other formalisms than RDF are known.

Furthermore, only a few RDF query languages are considered in this article.
This limitation is motivated both by the objective of an in-depth comparison of
the languages addressed and by space limitations. During the three years before
the writing of this article, more than three dozen proposals for RDF query
languages have been published! Not only such a large number, but also the often
immature nature of the proposals makes the focus on few, but representative
languages a necessary condition for a non-trivial comparison.

In the spirit of a practical introduction into these query languages, we have
taken an example-centered approach. We believe that this is advantageous to

RDF Querying: Language Constructs and Evaluation Methods Compared 3

the reader to quickly gain an impression of the language and constructs. Fur-
thermore, a more formal treatment of the languages is impeded by the lack
of (published) formal semantics. In Section 5, however, different semantics for
interesting language constructs are addressed and compared in select cases.

This article builds upon and complements the survey [5] of Semantic Web
query languages co-authored in 2005 by some of the authors of the present ar-
ticle.! While the focus of the 2005 survey has been a complete, but therefore
necessarily somewhat shallow coverage of Semantic Web query languages, in-
cluding on the one hand query languages for Topic Maps and on the other hand
all known “dialectal” variations of RDF query languages. In contrast, the present
article is focused on an in-depth comparison of a few selected RDF query lan-
guages that the authors consider representative. Although building upon the
survey [5], this article is self-contained.

At least the first part, of the article is mostly of an introductory nature. We
believe, however, that also researchers and scientists already acquainted with
RDF query languages can benefit from the presented material. This applies
particularly to the comparison of language constructs and evaluation methods
in the second part. We hope that the direct comparisons reveal choices that
language designers face when deciding which constructs to support in which
way, and that language users face when deciding which languages are suitable
for their particular needs.

Language Selection and Order

This article aims at introducing from the perspective of the authors interesting
and representative selection of query languages proposed for RDF":

— Firstly, the “relational” or “pattern-based” query languages SPARQL, RQL,
TRIPLE, and Xcerpt (with its visual “twin” visXcerpt).

— Secondly, the “reactive rule” query language Algae.

— Thirdly, the “navigational access” query language Versa.

Although incomplete and admittedly subjective, this choice can be seen as a
good coverage of the diverse language paradigms considered for querying RDF
data.

It is the authors’ hope and expectation that this comparison will motivate
further similar studies that complete the present article and overcome its limi-
tation. It is also the authors’ hope that this article will provide Semantic Web
practitioners and researchers alike with a good introduction into query answer-
ing on the Semantic Web even though it does not address all query languages
proposed for the Semantic Web.

Structure of this Article

The following three questions are at the heart of this article and give it its
structure:

! Sections 2 and 3 are shortend versions of corresponding sections of [5].

4 T. Furche et al.

1. what are the core paradigms of each query language,

2. what language constructs do different languages offer to solve tasks such as
path traversal, optional selection, or grouping,

3. how are they realized?

In Section 2, the RDF/S data model, a running example, the RDF/S seman-
tics and serialization formats are introduced. Section 3 begins by presenting a
categorization of Semantic Web queries and sample queries for each category.
Subsequently, in Section 4 the RDF query languages selected are introduced—
grouped according to their families, i.e., “relational” or “pattern-based”, “reac-
tive rule” and “navigational access”. For each language considered, some of the
sample queries are formulated. For the sake of conciseness and simplicity, not all
sample queries are expressed in each language considered. In Section 5 a sum-
mary and comparison of language features observable and desirable for RDF
query languages is given. Section 6 examines evaluation methods of Semantic
Web queries. Section 7 concludes this survey.

2 A Brief Introduction to RDF and RDFS

2.1 Data Model

RDF [10, 59] data are sets of “triples” or “statements” of the form (Subject,
Property, Object). RDF data are commonly seen as directed graphs the nodes
of which are statement’s subjects and objects and the arcs of which correspond
to statement’s properties, i.e., an arc relates a statement’s subject with the
statement’s object. Properties are also called “predicates”. Nodes (i.e., subjects
and objects) are either

1. labeled by URIs describing Web resources,
2. or labeled by literals, i.e., scalar data such as strings or numbers,
3. or are unlabeled and called anonymous or “blank nodes”.

Blank nodes are commonly used to group or “aggregate” properties. Specific
properties are predefined in the RDF and RDFS recommendations [21, 53, 59,
69], e.g., rdf:type for specifying the type of resources, rdfs:subClassOf for specify-
ing class-subclass relationships between subjects/objects, and rdfs:subPropertyOf
for specifying property-subproperty relationships between properties. Further-
more, RDFS has “meta-classes”, e.g., rdfs:Class, the class of all classes, and
rdf:Property, the class of all properties.?

RDFS [21] allows one to define so-called “RDF Schemas” or “ontologies”,
similar to object-oriented data models. The inheritance model of RDF'S exhibits
the following peculiarities:

1. resources can be classified in different classes that are not related in the class
hierarchy,

2 This survey tries to use self-explanatory prefixes for namespaces where possible.

RDF Querying: Language Constructs and Evaluation Methods Compared 5

2. the class hierarchy can be cyclic so that all classes on the cycle are “subclass

equivalent”,

properties are first-class objects, and

4. RDF does not describe which properties can be associated with a class, but
instead the domain and range of a property.

&

Based on an RDFS schema, “inference rules” can be specified, for instance the
transitivity of the class hierarchy, or the type of an untyped resource that has a
property associated with a known domain.

RDF can be serialized in various formats, the most frequently used being
(RDF/) XML. Early approaches to RDF serialization have raised considerable
criticism due to their complexity. As a consequence, a surprisingly large number
of RDF serializations have been proposed, cf. [26] for a detailed survey.

2.2 Running Example: Classification-Based Book Recommender

In the following, queries in a simple book recommender system describing vari-
ous properties and relationships between books are considered as running ex-
amples.? The recommender system describes properties of and relationships
between books. It consists of a hierarchy (or ontology) of the book categories
Writing, Novel, Essay, Historical_Novel, and Historical_Essay, and two books The
First Man in Rome (a Historical_Novel authored by Colleen McCullough) and
Bellum Civile (a Historical Essay authored by Julius Caesar and Aulus Hirtius,
and translated by J.M. Carter). Figure 1 depicts these data as a (simplified)
RDF graph [21, 59, 63]. Note in particular that a Historical_Novel is both, a
Novel and an Essay, and that books may optionally have translators, as is the
case for Bellum Civile.

The simple ontology in the book recommender system only makes use of the
subsumption (or “is-a-kind-of”) relation rdfs:subClassOf and the instance (or “is-
a”) relation rdf:type. This simple and small ontology is sufficient to illustrate the
most important aspects of RDF query languages.

The RDF representation of the sample data refers to the “simple datatypes” of
XML Schema [17] for scalar data: Book titles and authors’ names are “strings”,
(untyped or typed as xsd:string), publication years of books are “Gregorian
years”, xsd:gYear. The sample data are assumed to be accessible at the URI
http://example.org/books#. Where useful, e.g, when referencing the vocabu-
lary defined in the ontology part of the data, this URL is associated with the
prefix books.

Representation of the Sample Data in RDF. The RDF representation of
the book recommender system directly corresponds to the simplified RDF graph
in Fig. 1. It is given here in the Turtle serialization [7].

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

3 The same example is used in [5].

6 T. Furche et al.

__ translator
(dfs:domait rdfs:range

foaf:Person

195 domaj, __ . __ (dfsrange
author

.

° author » foaf:naj

title year,

The First Man
in Rome
I
author o foaf:name Julius Caesar
'

Aulus Hirtius

foaf:name J. M. Carter

Class Resource C] String Literal ——> ‘is-a-kind-of” Relation
© O 9 (rdfs:subClassOf)

Property :] (gregorian) Year Literal ----= "is-a” Relation (rdf:type)

o Colleen
McCullough

——————— B

title

Bellum Civile

translator

»
&
3
]
S
£
S
-8
3
3

Fig. 1. Sample Data: representation as a (simplified) RDF graph

@prefix xsd: <http://www.w3.org/2001/XMLSchema#>
@prefix foaf: <http://xmlns.org/foaf/0.1/>
:Writing a rdfs:Class ; rdfs:label "Novel" .
:Novel a rdfs:Class ; rdfs:label "Novel" ;
rdfs:subClass0f :Writing .
:Essay a rdfs:Class ; rdfs:label "Essay" ;
rdfs:subClass0f :Writing .
:Historical_Essay a rdfs:Class ;
rdfs:label "Historical Essay"; rdfs:subClass0f :Essay.
:Historical_Novel a rdfs:Class ;
rdfs:label "Historical Novel"

rdfs:subClass0f :Novel ; rdfs:subClass0f :Essay .
rauthor a rdf:Property ;

rdfs:domain :Writing ; rdfs:range foaf:Person .
:translator a rdf:Property ;

rdfs:domain :Writing ; rdfs:range foaf:Person .
:bl a :Historical_Novel ;

:title "The First Man in Rome" ;

:year "1990"""xsd:gYear ;

:author [foaf:name "Colleen McCullough"]
:b2 a :Historical_Essay ;

:title "Bellum Civile"

:author [foaf:name "Julius Caesar"] ;

:author [foaf:name "Aulus Hirtius"]

:translator [foaf:name "J. M. Carter"]

RDF Querying: Language Constructs and Evaluation Methods Compared 7

Books, authors, and translators are represented by blank nodes without iden-

[2

tifiers, or with temporary identifiers indicated by the prefix “_:”.

2.3 Semantics

The meaning of RDF data (e.g., what means “book”?) cannot be fully under-
stood by applications and is interpreted in different ways also by human readers.
Naturally, it depends on social, cultural, temporal and other types of context
information. However, RDF/S allow to specify part of the semantics of applica-
tions (e.g., “a book might have an author”).

As is common practice for declarative languages, the semantics of RDF/S is
specified in terms of a model theory [39, 53]. RDF applications should be able to
derive information using the inference rules for basic RDF, while only schema-
aware applications are expected to take into account information provided by
RDFS inference rules.

3 Sample Queries

The RDF query languages considered in this article are illustrated and illustrated
using five different types of queries against the sample data.* This categorization
is inspired by [67] and [34].

Selection queries simply retrieve parts of the data based on its content, struc-
ture, or position. The first query is thus:

Query 1. “Select all Essays together with their authors (i.e. author items and
corresponding names)”

Extraction queries extract substructures, and can be considered as a special form
of Selection Queries returning not only explicitly queried resources or statements,

but entire subgraphs.

Query 2. “Select all data items with any relation to the book titled ‘Bellum
Civile’.”

Reduction queries: Some queries are more concisely expressed by specifying what
parts of the data not to include in the answer:

Query 3. “Select all data items except ontology information and translators
from the book recommender system.”

Restructuring queries: In Web applications, it is often desirable to restructure
data, possibly into different formats or serializations. For example, the contents
of the book recommender system could be restructured to an (X)HTML repre-
sentation for viewing in a browser, or derived data could be created, like inverting
the relation author:

4 Again, these queries are mostly the same as in [5].

8 T. Furche et al.

Query 4. “Invert the relation author (from a book to an author) into a relation
authored (from an author to a book).”

In particular, RDF requires restructuring for reification, i.e. expressing “state-
ments about statements”. When reifying, a statement is replaced by four new
statements specifying the subject, predicate, and object of the old statement.
For example, the statement “Julius Caesar is author of Bellum Clivile” is reified
by the four statements “X is a statement”, “X has subject Julius Caesar”, “X
has predicate author”, and “X has object Bellum Civile”.

Aggregation queries: Restructuring the data also includes aggregating several
data items into one new data item. As Web data usually consists of tree- or
graph-structured data that goes beyond flat relations, we distinguish between
value aggregation working only on the values (like SQL’s max(-), sum(-), ...)
and structural aggregation working also on structural elements (like “how many
nodes”). Query 5 uses the max(-) value aggregation, while Query 6 uses structural
aggregation:

7

Query 5. “Return the last year in which an author with name ‘Julius Caesar
published something.”

Query 6. “Return each of the subclasses of ‘Writing’, together with the average
number of authors per publication of that subclass.”

Combination and inference queries: It is often necessary to combine information
that is not explicitly connected, like information from different sources or sub-
structures. Such queries are useful with ontologies that often specify that names
declared at different places are synonymous:

Query 7. “Combine the information about the book titled ‘The Civil War’ and
authored by ‘Julius Caesar’ with the information about the book with identifier
bellum_civile.”

Combination queries are related to inference, because inference refers to combin-
ing data, as illustrated by the following example: If the books entitled ‘Bellum
Civile’ and ‘The Civil War’ are the same book, and ‘if ‘Julius Caesar’ is an au-
thor of ‘Bellum Civile’, then ‘Julius Caesar’ is also an author of ‘The Civil War’.
Inference queries e.g. compute transitive closures of relations like the RDFS
subClassOf relation:

Query 8. “Return the transitive closure of the subClassOf relation.”

Not all inference queries are combination queries, as the following example illus-
trates:

Query 9. “Return the co-author relation between two persons that stand in au-
thor relationships with the same book.”

Some query languages have closure operators applicable to any relation, while
other query languages have closure operators only for certain, predefined rela-
tions, e.g., the RDF'S subClassOf relation. Some query languages support general
recursion, making it possible and easy to express the transitive closure of every
relation.

RDF Querying: Language Constructs and Evaluation Methods Compared 9

4 The RDF Query Language Families

In this survey, we focus on three groups of RDF query languages differing in
what the authors perceive as central paradigms of the languages:® Languages
following the relational or pattern-based paradigm use selection constructs sim-
ilar to selection-projection-join (SPJ) queries. Though they share a common
query core, the languages in this group vary quite noticeably, some extending
SPJ queries very conservatively, others going well beyond with novel constructs
aiming to adequately support the specifics of RDF. The second group is set apart
by the use of reactive rules but otherwise shares some commonality with the first
group. The final group is more distinctly separated by preferring navigational
access and path expressions over patterns.

Figure 2 may serve as orientation through the “language zoo” discussed in this
chapter and includes also “dialects” and variants that are only briefly mentioned
in the following.

4.1 The Relational Query Languages SPARQL, RQL, TRIPLE, and
Xcerpt

The SPARQL Family. SPARQL [84] is a query language that has already
reached candidate recommendation status at the W3C, and is on a good way to
become the W3C recommendation for RDF querying. It has its roots in SquishQL
[76] and RDQL [91].

Querying RDF data with languages in the SPARQL family amounts to match-
ing graph patterns that are given as sets of triples of subjects, predicates and
objects. These triples are usually connected to form graphs by means of joins
expressed using several occurrences of the same variable. SPARQL uses the Tur-
tle [7] serialization format for RDF as basis for its own triple syntax. It inherits
certain syntactic shorthands from Turtle: e.g., predicate-object lists allow several
statements to share the same subject without repeating the subject. Pairs of
predicates and objects following the subject are separated by colons. Object lists
are shorthands for several statements sharing both the subject and the predicate,
the objects being separated by commas.

Solutions to SPARQL (or SquishQL or RDQL) queries are given in the form
of result sets, for which also an XML format has been specified [9]. In SPARQL,
result sets are sets of mappings from the variables occurring within the query
to nodes of the queried data. Although RDQL and SquishQL are predeces-
sors of SPARQL, this section presents realizations of the sample queries only
in SPARQL. The formulation in the other members of the SPARQL family are
very similar though some of the queries use features only recently added and not
available in RDQL and SquishQL.

In SPARQL, Query 1 is expressed as follows.

PREFIX books: <http://example.org/books#>
PREFIX rdf: <http://www.w3.o0rg/1999/02/22-rdf-syntax-ns#>

5 See [5] for a more comprehensive survey of Semantic Web query languages.

10 T. Furche et al.

N3 = — —
Reactive RDF Query Languages
—+ TriQL “Relational” RDF Query Languages
RDQL
A S Ny —> VSPARQL
SquisQL SN =TT
~a - waQL
’_’,Dsmor—
RO = - T -+ eRQL
RDF-QBE RDEQL
——— > TRIPLE REEICE
MetalLog Xcerpt
: XQuery (‘Syntactic Web’) Pattern-based RDF Query Languages
|
: v RDF Twig RDF Query Languages with Navigational Access
I ==
| XSLT —— — — — — e ~ RDFT XsRQL
|
| -
| XPat = > Versa
I S=a
| “BRDF Path, RPath, RxPath
F-Logic
2000 2001 2002 2003 2004 2005
— — — —> strong influence ——» extension

Fig. 2. Chronological Overview of RDF Query Languages (in bold typeface: languages
covered in this survey; in italic typeface: non-RDF (mostly XML) query languages with
proposals/extensions for querying RDF; MetaLog’s unique approach to RDF querying
based on a natural language interface defies classification in this framework); N3QL is
not classified due to incomplete description

SELECT 7essay 7author 7authorName

FROM <http://example.org/books>

WHERE { 7essay rdf:type books:Essay .
7essay books:author 7author .
7author books:name 7authorName . }

The WHERE clause specifies the graph pattern to match using variables to
select data. Variables are recognized by either ? or $ prefix. Triples are connected
to graph patterns using “.” (colon). The FROM clause specifies the URL (or
some other identifier) of the data to be queried and the SELECT clause the
result variables.

Extraction queries like Query 2 can only be approximately expressed in all
members of the SPARQL family, because recursive traversals of the data are
not possible. Thus one cannot extract all information relevant to a particular
resource. Collecting all outgoing edges of a node together with the directly linked
objects of these predicates is possible and is showcased in the sample code below.

RDF Querying: Language Constructs and Evaluation Methods Compared 11

As can be seen, SPARQL does not syntactically differentiate between variables
for predicates and for resources, as opposed to RQL discussed below. Also the
extraction of information occurring at a fixed distance from the resource repre-
senting the book named “Bellum Civile” is possible by adding further statements
to the query below.

PREFIX books: <http://example.org/books#>

SELECT 7property 7propertyValue

FROM <http://example.org/books>

WHERE {7essay books:title "Bellum Civile" .
7essay 7property 7propertyValue . }

Another way to approximate extraction queries are SPARQL’s DESCRIBE
queries that allow the retrieval of “descriptions” for resources. The exact extent
of such a “description” is not defined in [84], but concise bounded descriptions
[96] are referenced as a reasonable choice. These represent a form of predefined
extraction query that returns all immediate properties for a resource as well as
the immediate properties of all blank nodes that are reachable from the resource
to be described without other named resources in between.

The FILTER keyword is used in SPARQL to eliminate result sets which eval-
uate to false when substituted in the boolean expressions given in the body of
the FILTER clause. A query that finds the persons that have authored a book
with title “Bellum Civile” can be expressed in SPARQL as follows:

PREFIX books: <http://example.org/books#>
SELECT ?person
FROM <http://example.org/books>
WHERE { ?7book books:author 7person .
?book books:title 7title .
FILTER (7title = ’Bellum Civile’) }

The three queries mentioned above are also expressible in SPARQL’s prede-
cessors SquishQL and RDQL with a slightly different syntax but almost identical
structure. SPARQL and its relatives do not support RDF/S inferencing, which
means that among other tasks, querying all resources of type books:Writing of the
example data above would not return any results, because there are no resources
which are directly associated with books:Writing via an rdf:type property. If the
SPARQL family provided support for inferencing, the resources represented by
the blank nodes _:bl and _:b2 in the serialization in Section 2.2 could be re-
turned as results to the query in compliance with the rule RDFS9 of the RDFS
semantics. One can argue that RDF/S and OWL reasoning should not be a
task of the query language, but should be provided by an underlying black box
reasoner. Given such a reasoner that transparently provides the full RDFS en-
tailment graph, i.e., the closure graph under the RDF/S inference rules, the
languages of the SPARQL family can very well answer queries such as the one
just mentioned.

There are several other characteristics and also limitations of the members of
the SPARQL family, which deserve to be mentioned:

12 T. Furche et al.

— Queries cannot be composed or nested.

— Negation can only be used in FILTER clauses (they are called AND-clauses
in SquishQL and RDQL), but not in WHERE clauses, i.e., triple patterns
can only occur positively.

— Due to the lack of recursion, members of the SPARQL family cannot express
certain kinds of inference queries such as 8 and extraction queries (as has
been mentioned above).

SPARQL being a descendant of RDQL and SquishQL, it provides some addi-
tional features, that go beyond the queries mentioned above and which are not
included in RDQL and SquishQL. Among these new features are:

— The construction, using CONSTRUCT clauses, of new RDF graphs with data
from the RDF graph queried. Just as the query patterns, the construct pat-
terns are specified as sets of triples with variables serving as placeholders.
Naturally, all variables appearing within the construct pattern must also
appear within the query.

— The possiblity to return, using DESCRIBE clauses, “descriptions” of the re-
sources matching the query part. The exact meaning of “description” is left
undefined, cf. [96] for a proposal.

— The specification of OPTIONAL triple or graph query patterns, i.e., data that
should contribute to an answer if present in the queried data, but whose
absence does not prevent from returning an answer. A corollary of is the
ability of SPARQL to test for absence of triples (i.e., negation-as-failure).
E.g., finding all books which do not have a translator is achieved by using
the OPTIONAL keyword and a FILTER expression requiring that the optional
variable is not bound included in the optional query part:

PREFIX books: <http://example.org/books#>
PREFIX rdf: <http://www.w3.o0rg/1999/02/22-rdf-syntax-ns#>
SELECT ?writing
FROM <http://example.org/books>
WHERE { ?7writing books:author _:Author .
OPTIONAL { ?writing books:translator 7translator } .
FILTER (!bound(?translator)) }

— The expression of disjunctions of queries with the keyword UNION.

— Querying named graphs. First introduced in TriQL [18], another variant of
RDQL, named graphs allow the scoping of triples and triple patterns: A
query is evaluated not against a single set of triples but rather against a set
of such sets each associated with a name (in form of a URI). The FROM
NAMED clause can limit the matching of the triple pattern in the associated
WHERE to the graphs with the specified names.

In contrast to other RDF query languages, SPARQL supports four different
query result forms, which vary in the type of results returned. Only queries
formulated using CONSTRUCT or DESCRIBE are closed in the sense that the
results are RDF graphs just as the queried data. Queries using ASK return a
boolean value and is used to find out whether a query pattern matches with the

RDF Querying: Language Constructs and Evaluation Methods Compared 13

data. The SELECT query pattern is used to collect variable bindings from query
patterns just as in SquishQL and RDQL.

The CONSTRUCT clause provides a straightforward enhancement over mere
collection of variable bindings. Following the CONSTRUCT keyword, a result
template is specified, which is an RDF graph that contains some or all of the
variables from the query pattern in the WHERE-clause. For each match of the
query pattern with the queried data, the result template is filled with the cor-
responding variable bindings, and the resulting RDF graph is included in the
answer graph. However, CONSTRUCT patterns are rather limited missing, e.g.,
any ability for grouping (and thus can not construct new RDF containers or
collections).

Using the CONSTRUCT clause, restructuring and non-recursive inference
queries can be expressed in SPARQL. Query 4 can be expressed in SPARQL
as follows:

PREFIX books: <http://example.org/books#>
CONSTRUCT {7y books:authored 7x}

FROM <http://example.org/books>

WHERE {?x books:author 7y}

and Query 9 by

PREFIX books: <http://example.org/books#>
CONSTRUCT {?x books:co-author ?y}
FROM <http://example.org/books>
WHERE { ?book books:author ?x .
?book books:author 7y .
FILTER (?x !'= ?7y) }

One of SPARQL’s design principles is that queries should be easily derivable
from RDF graphs. Thus, any RDF graph can be included in the WHERE-clause
of a SPARQL query in Turtle [7] syntax. A further result of this design prin-
ciple is that blank nodes are allowed to appear within query patterns. It must
be emphasized that blank nodes in query patterns are not required to match
with blank nodes of the data to be queried, but are mere syntactical sugar for
existentially quantified variables.b

Besides query result forms, SPARQL provides the solution modifiers DIS-
TINCT, ORDER BY, LIMIT, and OFFSET. DISTINCT eliminates duplicates in
the sets of variable bindings, LIMIT specifies an upper bound for the number of
solutions, OFFSET is used to omit the first n solutions of the solution sequence,
and ORDER BY allows to order the solution sequence ascending or descending
according to one or more variable bindings or according to a function.

[84] contains a formal semantics for SPARQL. For details on SPARQL’s se-
mantics refer to [84] and to the tutorial on SPARQL in this volume [81]. The
latter, in particular, motivates the, at a first glance, slightly odd definition of
SPARQL’s semantics.

5 See http://lists.w3.org/Archives/Public/public-rdf-dawg-comments/2006Jan /0073-
.html for a discussion about blank nodes in SPARQL queries.

14 T. Furche et al.

The RQL Family. Under “RQL family”, we group the languages RQL [57]
and SeRQL [22]. Common to these languages is that they support combining
data and schema querying. In the case of RQL, the RDF data model deviates
slightly from the standard data model for RDF and RDFS: (1) cycles in the
subsumption hierarchy are forbidden, and (2) for each property, both a domain
and a range must be defined. These restrictions ensure a clear separation of the
three abstraction layers of RDF and RDFS: (1) data, i.e. description of resources
such as persons, XML documents, etc., (2) schemas, i.e. classifications for such
resources, and (3) meta-schemas specifying meta-classes such as rdfs:Class, the
class of all classes, and rdf:Property the class of all properties. They make possible
a flexible type system tailored to the specificities of RDF and RDFS.

In the following discussion we concentrate on RQL, the “RDF Query Lan-
guage”, that has been developed at ICS-FORTH [31, 54, 55, 56, 57]. Its most
distinguishing feature is a strong support for typing as well as a more complete
set of advanced language operators such as set operations, aggregation, container
construction and access than in most other RDF query languages.

SeRQL aims to be a more accessible derivate of RQL. Therefore several syn-
tactic shorthands (e.g., object-property and object lists and optional expressions,
all three later adopted in SPARQL) are introduced for common query situations.
Also SeRQL drops built-in support for typing beyond literals, presumably un-
der the impression that the multitude of language constructs provided in RQL
makes the language too complex. The same reasoning applies for advanced query
constructs such as set operations, universal quantification, aggregations, etc.

Another derivate of RQL is eRQL, a radical simplification of RQL based
mostly on a keyword-based interface. It is the expressed goal of the authors
of eRQL to provide a “Google-like query language but also with the capacity
to profit of the additional information given by the RDF data”.” The resulting
language is, unsurprisingly, of rather limited expressiveness and can not express
most of the sample queries.

Basic schema queries. A salient feature of RQL is the use of the types from
RDFS schemas. The query subClassOf(books:Writing) returns the sub-classes of
the class books:Writing®. A similar query, using subPropertyOf instead of sub-
ClassOf, returns the sub-properties of a property. The following three queries
returns the domain ($C1) and range ($C2) of the property author defined at the
URI named books. The prefix $ indicates “class variable”, i.e., a variable ranging
on schema classes. It can be expressed in RQL in three different manners:

1. using class variables:

SELECT $C1, $C2 FROM {$C1}books:author{$C2}
USING NAMESPACE books = &http://example.org/books#

2. using a type constraint:
SELECT C1, C2 FROM Class{C1}, Class{C2}, {;Ci}books:author{;C2}
USING NAMESPACE books = &http://example.org/books#

" http://www.dbis.informatik.uni-frankfurt.de/~tolle/RDF/eRQL/
8 Assuming: USING NAMESPACE books = &http://example.org/books-rdfs#

RDF Querying: Language Constructs and Evaluation Methods Compared 15

3. without class variables or type constraints:
SELECT C1, C2 FROM subClassOf (domain(book:author)){C1},
subClass0f (range (books :author)) {C2}
USING NAMESPACE books = &http://example.org/books#

While the first two queries return exactly the same result—mnamely the do-
main and range of the books:author-property and all possible combinations of
their subclasses—the third query does not include the domain and range of
books:author itself but only the combinations of their subclasses. There is an-
other subtle difference: the first two queries should only return class combinations
for which actual statements exist, the third should also return class combination
where no actual statement for that combination exists.

The query topclass(books:Historical_Essay) returns the top of the subsumption
hierarchy, i.e., books:Writing, cf. Figure 1. Similar constructs for querying the
leaves of the subsumption hierarchy or the nearest common ancestor of the two
classes are available. Moreover, RQL has “property variables” that are prefixed
by @ and which can be used to query RDF properties (just as classes can be
queried using class variables). The following query, with property variables pre-
fixed by @ returns the properties, together with their actual ranges, that can be
assigned to resources classified as books:Writing:

SELECT @P, $V FROM {;books:Writing}@P{$V}
USING NAMESPACE books = &http://example.org/books#

Combining these facilities, Query 8 is expressible in RQL as follows:
SELECT X, Y FROM Class{X}, subClassO0f (X){Y}.

Data queries. With RQL, data can be retrieved by its types or by navigating to
the appropriate position in the RDF graph. Restrictions can be expressed using
filters. Classes, as well as properties, can be queried for their (direct and indirect,
i.e., inferred) extent. The query books:Writing returns the resources classified
as books:Writing or as one of its sub-classes. This query can also be expressed
as follows: SELECT X FROM books:Writing{X}. Prefixing the variable X with ~
in the previous queries, yields queries returning only resources directly classified
as books:Writing, i.e., for which a statement (X, rdf:type, books:Writing) exists.
The extent of a property can be similarly retrieved. The query ~“books:author
returns the pairs of resources X,Y that are in the books:author relation, i.e., for
which a statement (X, books:author, Y') exists. RQL offers extended dot notation
as used in OQL [29], for navigation in data and schema graphs. This is convenient
for expressing Query 1:

SELECT X, Y, Z FROM {X;books:Essayl}books:author{Y}.books:authorName{Z}
USING NAMESPACE books = &http://example.org/books#

The data selected by an RDF query can be restricted with a WHERE clause:

SELECT X, Y FROM {X;books:Essay}books:author.books:authorName{Y},
{X}books:title{T}

WHERE T = "Bellum Civile"

USING NAMESPACE books = &http://example.org/books#

16 T. Furche et al.

Mized schema and data queries. With RQL, access to data and schema can be
combined in all manners, e.g., the expression X;books:Essay restricts bindings
for variable X to resources with type books:Essay. Types are often useful for
filtering, but type information can also be interesting on their own, e.g., to
return a “description” of a resource understood as its schema:

SELECT $C, (SELECT @P, Y FROM {Z ; ~$D} ~@P {Y}

WHERE Z = X and $D = $C)
FROM ~$C {X}, {X}books:title{T} WHERE T = "Bellum Civile"
USING NAMESPACE books = &http://example.org/books#

This query returns the classes under which the resource with title “Bellum
Civile” is directly classified; ~$C{X} finds the classes under which the resource X
is directly classified.

Further features of RQL are not discussed here, e.g., support for containers,
aggregation, and schema discovery. Although RQL has no concept of “view”, its
extension RVL [66] gives a facility for specifying views.

RQL has been criticized for its large number of features and choice of syntactic
constructs (like the prefixes ~ for calls and @ for property variables), which
resulted in the simplifications SeRQL and eRQL of RDF. On the other hand,
RQL is far more expressive than most other RDF query languages, especially
those of the SPARQL family. Most queries of Section 3, except those queries
referring to the transitive closures of arbitrary relations, can be expressed in
RQL.

Query 1 is already given in RQL above. Query 2 cannot be expressed in RQL
exactly, since RQL has no means to select “everything related to some resource”.
However, a modified version of this query, where a resource is described by
its schema, is also given above. Reduction queries, e.g. Query 3, can often be
concisely expressed in RQL, in particular if types are available:

SELECT S, @epP, O

FROM (Resources minus (SELECT T FROM {B}books:translator{T})){S},
(Resources minus (SELECT T FROM {B}books:translator{T})){0},
{s}er{0}

USING NAMESPACE books = &http://example.org/books#

An implementation of the restructuring Query 4 is given above in the exten-
sion RVL of RQL. RQL is convenient for expressing aggregation queries, e.g.,

Query 5:

max (SELECT Y
FROM {B;books:Writing}books:author.books:authorName{A},
{B}books:pubYear{Y}
WHERE A = "Julius Caesar")

Inference queries that do not need recursion, e.g., Query 9, can be expressed
in RQL as follows:

RDF Querying: Language Constructs and Evaluation Methods Compared 17

SELECT A1, A2 FROM {Z}books:author{A1}, {Z}books:author{A2}
WHERE A1 !'= A2
USING NAMESPACE books = &http://example.org/books#

In RQL’s extension RVL, an expression of Query 9 can actually create new
statements as follows:

CREATE NAMESPACE mybooks = &http://example.org/books-rdfs-extension#
VIEW mybooks:co-author(Al, A2)

FROM {Z}books:author{A1}, {Z}books:author{A2} WHERE Al != A2
USING NAMESPACE books = &http://example.org/books#

A formal semantics for RQL has been defined together with the language,
e.g., in [57].

TRIPLE. [51, 92, 93] is a rule-based query, inference, and transformation lan-
guage for RDF. TRIPLE is based upon ideas published in [40]. TRIPLE’s syntax
is close to F-Logic [58]. F-Logic is convenient for querying semi-structured data,
e.g., XML and RDF, as it facilitates describing schema-less or irregular data
[64]. Other approaches to querying XML and/or RDF based on F-Logic are
XPathLog [75] and the ontology management platform Ontobroker®. TRIPLE
has been designed to address two weaknesses of previous approaches to query-
ing RDF: (1) Predefined constructs expressing RDFS’ semantics that restrain a
query language’s extensibility, and (2) lack of formal semantics.

Instead of predefined RDFS-related language constructs, TRIPLE offers Horn
logic rules (in F-Logic syntax) [58]. Using TRIPLE rules, one can implement
features of, e.g., RDFS. Where Horn logic is not sufficient, as is the case of
OWL, TRIPLE is designed to be extended by external modules implementing,
e.g., an OWL reasoner. Thanks to its foundations in Horn logic, TRIPLE can
inherit much of Logic Programming’s formal semantics. Referring to, e.g., a
representation of UML in RDF [60, 61], the authors of TRIPLE claim in [93] that
TRIPLE is well-suited to query non-RDF meta-data. This can be questioned,
especially if, in spite of [44], one considers the rather awkward mappings of Topic
Maps into RDF proposed so far.

TRIPLE differs from Horn logic and Logic Programming as follows [93]:

— TRIPLE supports resources identified by URIs.

— RDF statements are represented in TRIPLE by slots, allowing the grouping
and nesting of statements; like in F-Logic, Path expressions inspired from
[43] can be used for traversing several properties.

— TRIPLE provides concise support for reified statements. Reified statements
are expressed in TRIPLE enclosed in angle brackets, e.g.:
Julius_Caesar[believes-><Junius_Brutus[friend-of -> Julius_Caesar]>]

9 http://www.ontoprise.de/products/ontobroker

18 T. Furche et al.

— TRIPLE has a notion of module allowing specification of the ‘model’ in
which a statement, or an atom, is true. ‘Models’ are identified by URIs that
can prefix statement or atom using ©.

— TRIPLE requires an explicit quantification of all variables.

Query 1 can be approximated as follows:

rdf ’http://www.w3.0rg/1999/02/22-rdf-syntax-ns#’ .
books := ’http://example.org/books#’.
booksModel := ’http://example.org/books’.
FORALL B, A, AN result(B, A, AN) <-
B[rdf:type -> books:Essay;
books:author -> A[books:authorName -> AN]]@booksModel.

This query selects only resources directly classified as books:Essay. Query 1 is
properly expressed below.

TRIPLE’s rules give rise to specify properties of RDF. [93] gives the following
implementation of a part of RDFS’s semantics:

rdf = ’http://www.w3.0rg/1999/02/22-rdf-syntax-ns#’ .
rdfs := ’http://wuw.w3.0rg/2000/01/rdf-schema#’ .

type := rdf:type.

subProperty0f := rdfs:subProperty0f.

subClass0f := rdfs:subClassOf.

FORALL Mdl @rdfschema(Mdl) {
transitive (subProperty0f) .
transitive (subClass0f) .
FORALL 0,P,V O[P->V] <-
o[pP->v]emMdl.
FORALL 0,P,V O[P->V] <-
EXISTS S S[subProperty0f->P] AND 0[S->V].
FORALL 0,P,V O[P->V] <-
transitive(P) AND EXISTS W (O[P->W] AND W[P->V]).
FORALL 0,T O[type->T] <-
EXISTS S (S[subClass0f->T] AND O[type->S1).

Inference from range and domain restrictions of properties are not imple-
mented by the rule given above. This is no limitation of TRIPLE, though, as
they can be realized by the following additional rules:

FORALL S,T S[type-$>$T] <-

EXISTS P, 0 (S[P-$>$0] AND P[rdfs:domain-$>$T]).
FORALL 0,T O0[type->T] <-

EXISTS P, S (S[P-$>$0] AND P[rdfs:range-$>$T]).

With the rules given above, the approximation of Query 1 given above only
needs to be modified so as to express the ‘model’ it is evaluated against: instead of
©@booksModel, @rdfschema(booksModel) should be used, i.e., the original ‘model’

RDF Querying: Language Constructs and Evaluation Methods Compared 19

should be extended with the above-mentioned rules implementing RDFS’ seman-
tics. Most queries of Section 3 can be expressed in TRIPLE. Aggregation queries
cannot be expressed in TRIPLE, for the language does not support aggregation.

[93] specifies an RDF, and therefore XML, syntax for a fragment of TRIPLE.
By relying on translations to RDF, one can query data in different formalisms
with TRIPLE, e.g., RDF, Topic Maps, and UML. This, however, might lead to
rather awkward queries. Some aspects of RDF, viz. containers, collections, and
blank nodes, are not supported by TRIPLE.

Xcerpt. Xcerpt [13, 24, 88, 89], cf. http://xcerpt.org, is a language for query-
ing both data on the “standard Web” (e.g., XML and HTML data) and data
on the Semantic Web (e.g., RDF, Topic Maps data). Therefore the approach of
querying an XML serialization of Semantic Web data is feasible in Xcerpt, but
it is not as natural as directly querying the RDF data. Xcerpt uses common lan-
guage constructs for querying data in several different formats and is therefore
very useful for authoring applications that combine all kinds of Web data. This
survey focuses on applying Xcerpt to querying RDF data, but querying XML
and Topic Maps with Xcerpt is quite similar (cf. [5]).

Three features of Xcerpt are particularly convenient for querying RDF data.
(1) Xcerpt’s pattern-based incomplete queries are convenient for collecting re-
lated resources in the neighbourhood of some given resources and to express
traversals of RDF graphs of indefinite lengths. (2) Xcerpt chaining of (possibly
recursive rules) is convenient for expressing RDFS’s semantics, e.g., the transi-
tive closure of the subClassOf relation, as well as all kinds of graph traversals. (3)
Xcerpt’s optional construct is convenient for collecting properties of resources.

All nine queries from Section 3 can be expressed in Xcerpt. The following
Xcerpt programs show solutions for the queries against the RDF serialization
from Section 2.

[19] proposes two views on RDF data: as in most other RDF query languages
as plain triples with explicit joins for structure traversal and as a proper graph.

On the plain triple view, Query 1 can be expressed in Xcerpt as follows:

DECLARE ns-prefix rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
ns-prefix books = "http://example.org/books#"

GOAL
result [
all essay [
id [var Essay],
all author [
id [var Author],
all name [var AuthorName]
111
FROM
and (
RDFS-TRIPLE [
var Essay:uri{}, "rdf:type":uri{}, "books:Essay":uri{}],

20 T. Furche et al.

RDF-TRIPLE [
var Essay:uri{}, "books:author":uri{}, var Author:uri{} 1,
RDF-TRIPLE [
var Author:uri{}, "books:authorName":uri{}, var AuthorName])
END

Using the prefixes declared in line 1 and 2, the query pattern (between FROM
and END) is a conjunction of tree queries against the RDF triples represented in
the predicate RDF-TRIPLE. Notice that the first conjunct actually uses RDFS-
TRIPLE. This view of the RDF data contains all basic triples plus the ones
entailed by the RDFS semantics [53] (cf. [19] for a detailed description). Us-
ing RDFS-TRIPLE instead of RDF-TRIPLE ensures that also resources actually
classified in a sub-class of books:Essay are returned. Xcerpt’s approach to RDF
querying shares with [86] the ability to construct arbitrary XML as in this rule.

On Xcerpt’s graph view of RDF, the same query can be expressed as follows:

DECLARE ns-prefix rdf = "http://www.w3.o0rg/1999/02/22-rdf-syntax-ns#"
ns-prefix books = "http://example.org/books#"

GOAL
result [
all essay [
id [var Essay],
all author [
id [var Author 1],
all name [var AuthorName]
111
FROM
RDFS-GRAPH {{
var Essay:uri {{
rdf:type {{ "books:Essay":uri {{ }} }},
books:author {{
var Author:uri {{
books:name {{ var AuthorName }}
i3
33
END

The RDF graph view is represented in the RDF-GRAPH predicate. Here, the
RDFS-GRAPH view is used that extends RDF-GRAPH just like RDFS-TRIPLE
extends RDF-TRIPLE. Triples are represented similar to striped RDF/XML: each
resource is a direct child element in RDF-GRAPH with a sub-element for each
statement with that resource as object. The sub-element is labeled with the URI
of the predicate and contains the object of the statement. As Xcerpt’s data model
is a rooted graph (possibly containing cycles) this can be represented without
duplication of resources.

In contrast to the previous query no conjunction is used but rather a
nested pattern that naturally reflects the structure of the RDF graph with the

RDF Querying: Language Constructs and Evaluation Methods Compared 21

exception that labeled edges are represented as nodes with edges to the elements
representing their source and sink.

Xcerpt rules are convenient for making the language “RDF serialization trans-
parent”. For each RDF serialization, a set of rules expresses a translation from
or into that serialization. However, the rules for parsing RDF/XML [10], the
official XML serialization, are very complex and lengthy due to the high degree
of flexibility RDF/XML allows. They can be found in [19], similar functions for
parsing RDF/XML in XQuery are described in [87]. The following rules parse
RDF data serialized in the RXR (Regular XML RDF) format [4], a far simpler
and more regular RDF serialization.

The following rule extracts all triples from an RXR document. Since different
types (such as URI, blank node, or literal) of subjects and objects of RDF triples
are represented differently in RXR, the conversion of the RXR representation
into the plain triples is performed in separate rules, see [19].

DECLARE ns-prefix rxr = "http://ilrt.org/discovery/2004/03/rxr/"

CONSTRUCT
RDF-TRIPLE[
var Subject, var Predicate:uri{}, var Object]
FROM
and [
rxr:graph {{
rxr:triple {
var S as rxr:subject{{}},
rxr:predicate{ attributes{ rxr:uri{ var Predicate } } },
var 0 as rxr:object{{}}
}
13,
RXR-RDFNODE[var S, var Subject 1],
RXR-RDFNODE[var 0, var Object]
]
END

Querying RDF data with Xcerpt is the subject of ongoing investigation [19].

A visual language, called wvisXcerpt [11, 12], has been conceived as a visual
rendering of textual Xcerpt programs, making it possible to freely switch during
programming between the visual and textual view, or rendering, of a program.

A formal semantics of Xcerpt has been published in [88]. Static type checking
methods have been developed for Xcerpt [25, 98] that are based on seeing tree
grammars in their various disguises, e.g., DTD, XML Schema, RelaxNG, as
definitions of abstract data type. Recent work [28, 90] on Xcerpt focuses on
efficient evaluation of Xcerpt’s high-level constructs.

There is quite a number of other query languages that fall into this group but
can not be covered here for space reasons (for further details see [5]). Further
investigaton of such languages might start with R-DEVICE [6], RDF-QBE [85],
and RDFQL [1].

22 T. Furche et al.

4.2 The Reactive Rule Query Language Algae

Algae'? is an RDF query language developed as part of the W3C Annotea project
(http://www.w3.0rg/2001/Annotea/) aiming at enhancing Web pages with se-
mantic annotations, expressed in RDF and collected from ‘annotation servers’,
as Web pages are browsed. Algae is based on two concepts: (1) “Actions” are the
directives ask, assert, and fwrule that determine whether an expression is used
to query the RDF data, insert data into the graph, or to specify ECA!!-like
rules. (2) Answers to Algae queries are bindings for query variables as well as
triples from the RDF graph as “proofs” of the answer. Algae queries can be com-
posed. Syntactically, Algae is based on the RDF syntax N-triples [46], a subset
of the N3 [14] notation for RDF. This subset excludes specifically N3 rules or
queries as used in the N3QL proposal [15]. Algae extends the N-triple syntax
with the above mentioned “actions” and with so-called “constraints”, written
between curly brackets, that specify further arithmetic or string comparisons to
be fulfilled by the data retrieved.
Query 1 can be expressed as follows:

ns rdf <http://wuw.w3.org/1999/02/22-rdf -syntax-ns#>

ns books = <http://example.org/books#>

read <http://example.org/books> ()

ask (?essay rdf:type <http://example.org/books#Essay> .
7essay books:author 7author .
7author books:authorName 7authorName)

collect(7essay, 7author, 7authorName)

This query becomes more interesting if we are not only interested in the titles
of essays written by “Julius Caesar” but also want the translators of such books
returned, if there are any:

ns rdf = <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

ns books = <http://example.org/books#>

read <http://example.org/books> ()

ask (7essay rdf:type <http://example.org/books#Essay> .
7essay books:author 7author .
7author books:authorName ‘‘Julius Caesar’’
7essay books:title 7title .

“7essay books:translator 7translator .

)

collect(?title, ?translatorName)

Note ~ used to declare ‘translator’ an optional. This query returns the answer
given in Table 1.

Query 2 and Query 4 cannot be expressed in Algae due to the lack of closure,
recursion, and negation. Queries 5 and 6 cannot be expressed in Algae due to
the lack of aggregation operators. All other queries can be expressed in Algae,
most of them requiring ‘extended action directives’ [82].

10 Also called “Algae2”. This survey follows [83] and retains the name “Algae”.
11 ECA stands for event-condition-action.

RDF Querying: Language Constructs and Evaluation Methods Compared 23

Table 1. Answer to Query 1

?title [?translator ‘Proof

“Bellum Civile”|“J. M. Carter”| .4 rdf :type <http://exam...ks-rdfs#Essay>.
_:1 books:author _:2.
_:2 books:authorName ¢‘Julius Caesar’’.
_:1 books:title ‘‘Bellum Civile’’.
_:1 books:translator ‘‘J. M. Carter’’.

No formal semantics has been published for Algae.

Algae is not the only RDF query language that provides reactive rules: iTQL
[2] is used in the Kowari Metastore and provides querying, update, and trans-
action management functionality, for details see [5]. iTQL is also one of the
few RDF query languages with a form of unrestricted closure path expressions
(thanks to the trans function). RUL [65], the RDF update language, provides
update expressions on top of RQL.

4.3 The Navigational Access Query Language Versa

Developed as part of the Python-based 4Suite XML and RDF toolkit'?, Versa
[77, 78, 79] is a query language for RDF inspired, but significantly different from
XPath[33, 45]. Versa can be used in lieu of XPath in the XSLT version of 4Suite.
Like the Syntactic Web Approach, TreeHugger, and RDF Twig, Versa is aligned
with XML. Like XPath, Versa can be extended by externally defined functions.
Versa’s authors claim that Versa is easier to learn than RDF query languages
inspired from SQL.

Versa has constructs for a forward traversal of one or more RDF proper-
ties, e.g., all() - books:author -> * selects those resources that are author
of other resources. Instead of the wildcard *, string-based restrictions can be
expressed. Using Versa’s forward traversal operators, Query 1 can be expressed
as follows:

distribute(type(books:Essay), ".",
"distribute(.-books:author->*, ".", ".-books:authorName->*)")

The function distribute() returns a list of lists containing the result of the
second, third, ... argument evaluated starting from each of the resources selected
by the first argument. As in XPath, . denotes the current node.

Versa has a Forward filter for selecting the subject of a statement, e.g.,
type(books:Essay) |- books:title -> eq("Bellum Civile") returns the
essays entitled “Bellum Civile”. Versa has also constructs for a backward traversal
(but no backward filter), e.g., the essays titled “Bellum Civile” are returned by

2 http://4suite.org/

24 T. Furche et al.

(books:Essay <- rdf:type - *) |- books:title -> eq("Bellum Gallicum").

Versa’s function traverse serves to traverse paths of arbitrary length, e.g., the
following query returns all sub-classes of books:Writing:

traverse(books:Writing, rdf:subClass0f, vtrav:inverse, vtrav:transitive)

Similarly, Versa’s function filter provides a general filter, e.g., all essays entitled
“Bellum Gallicum” having a translator named “J. M. Carter” are returned by
the following query:

filter(books:Essay <- rdf:type - *,
". - books:title -> eq(’Bellum Gallicum’)",
". - books:translator -> books:translatorName -> eq(’J. M. Carter’)"

Selection and extraction queries can be easily implemented in Versa, although
the selection of related items is not very convenient, as the above implementation
of Query 1 demonstrates. In contrast to most RDF query languages, Versa allows
the extraction of RDF subgraphs of arbitrary sizes, as required by Query 2.
Reduction queries can be expressed in Versa, e.g., using negation or set difference.
Query 3 can be implemented in Versa as follows:

difference(all(),
union(type(rdfs:Class),
union(type (rdf:Property,
all() <- books:translator - *))

)

Restructuring, combination, and inference queries cannot be expressed in
Versa, as the result of a Versa query is always a list (possibly a list of lists).
However, Query 4 and 9 can be approximated in Versa as follows:

distribute(all(), ". - books:author -> *", ". - books:author -> *")

Answers to this query include “Julius Caesar” (as if he would be a co-author
of himself !). This does not seem to be avoidable with Versa. Versa also provides
several aggregation functions. Query 5 can be expressed as follows in Versa:

max(filter(all(),
". - books:author -> books:authorName -> eq(’Julius Caesar’)"
)

- books:year -> x)
Query 6 can be implemented in Versa using the function length as follows:

distribute(traverse(books:Writing, rdf:subClassOf,
vtrav:inverse,vtrav:transitive),
n n
"max (length((. <- rdf:type *) - books:author -> *))"
)

RDF Querying: Language Constructs and Evaluation Methods Compared 25

No formal semantics has been published for Versa.

Aside from Versa, most RDF query languages that fall into this group are
derivatives of XPath or XSLT or are at least very similar to these XML query
languages, for details once more refer to [5]. There are a few proposals for XPath-
style RDF path languages (RDF Path [80], RPath [74], RxPath [94]), however
all proposals are very limited in expressiveness and often immature. [86, 87]
suggests the use of XQuery for querying RDF, TreeHugger [95] and RDF Twig
[97] do the same for XSLT (1.0), the latter two relying on external functions for
preprocessing the RDF data. RDFT [38] suggests an RDF template language in
the style of XSLT, as does [62]. Both approaches seem to have been abandoned.

This section has introduced a number of RDF query languages divided in three
groups. For an overview of the discussed languages and their relations, refer
again to Figure 2. The following two sections relate the introduced languages
comparing their approaches to selection, construction, evaluation, etc.

5 Language Constructs Compared

The previous section establishes a basic understanding of interesting exemplars
of RDF query languages. This broad overview of languages is complemented in
this section with a close look at specific language concepts and constructs. For
instance, selecting optional data is essential for RDF, since all properties are
optional by default. However, different languages provide quite different means
to handle such data. All these language constructs are compared over several
of the languages from the previous section as appropriate to show the range of
solutions for the particular need.

For the purpose of this section, the constructs are divided in three classes:
selection, construction, and procedural abstraction or view definition.

5.1 Selection

The basic functionality of any query language is selection, i.e., the ability to
characterize subsets of the queried data that match the user’s query intent. In
relational databases where the schema of the data is well-known, such charac-
terizations are often based on few attributes of the sought-for data items and
possibly a small number of relations with other data items. On semi-structured
data such as XML or RDF, selection becomes more centered around the position
of the sought-for data items within the structure of the queried data. Some RDF
(and most XML) query languages therefore provide not just selection based on
attribute value, but richer selection constructs.

Triple Patterns vs. Path expressions

Triple patterns. The basic form of selection construct is a triple pattern that
corresponds to a relational selection-(projection-)join query. A triple pattern
consists of a conjunction of one or more triples, that are just like data triples but
may additionally be extended with query constructs such as variables. SPARQL
uses triple patterns in Turtle syntax. E.g.,

26 T. Furche et al.

7essay books:title "Bellum Civile"

selects the resources with “Bellum Civile” as value of the books:title property.
This basic form of a triple pattern is like a selection operation from the relational
algebra. If variables occur in several triples in the same triple pattern, that
pattern becomes a selection-(projection-)join query!3, e.g.,

7essay books:author 7author.
7author foaf:name "Julius Caesar"

Joins expressed, e.g., through multiple occurrences of the same variable in
the same pattern query are even more prevalent in RDF than in usual relational
queries. This is partially due to the binary nature of RDF properties. Further-
more, one often needs to “traverse” several intermediary nodes in the RDF graph
to select the actually used data items.

Specifying such traversals in a succinct way has been considered not only in
the context of RDF, but also in the context of relational (GEM [100]), object-
oriented ([43]) and XML ([33]) data. The most successful and for semi-structured
and XML query languages widely accepted construct for specifying structure
traversal are path expressions. Essentially, they allow the omission of variables
for intermediary nodes that are just used to “reach” the target nodes. E.g., the
above SPARQL query can also be written as

7essay books:author [foaf:name "Julius Caesar"].

which uses the ability of SPARQL’s syntax to omit blank nodes (i.e., existen-
tially quantified variables) in queries and is tantamount to a path expression.
RQL specifically introduces path expressions with a syntax similar to OQL’s dot
notation:

{Essay}books:author.foaf :name{A}.

Path Ezpressions. Path expressions constructs can be classified along their in-
tended use and expressiveness in three classes:

1. Basic path expressions are only abbreviations for triple patterns as seen in
SPARQL or RQL. They allow only the specification of fixed length traversals,
i.e., the traversed path in the data is of same length as the path expression.
These path expressions are not more expressive than triple patterns (and
therefore SPJ queries), but are nevertheless encountered in several query
languages as “syntactic sugar”. Examples of query languages with only basic
path expressions are GEM [100], OQL [29], SPARQL [84], and RQL [84].

2. Unrestricted closure path expressions are a common class of path expressions
that adds to the basic path expressions the ability to traverse arbitrary-
length paths. XPath path expressions (disregarding XPath predicates for
the moment) fall into this category with closure axes such as descendant.
This type of path expressions is very common in XML query languages

13 Triple pattern queries as discussed here and used, e.g., in SPARQL have more or
less the same expressiveness and evaluation complexity as relational SPJ-queries.

RDF Querying: Language Constructs and Evaluation Methods Compared 27

(e.g., XML-QL [41], Quilt [30], XPath and all XML query languages based
on XPath). It is also used in the RDF query language iTQL[2]. Its expressive-
ness is indeed higher than that of basic triple patterns (SPJ queries). It can
be realized in languages that provide only triple patterns but additionally
(at least linear) recursive views. SQL-99 is an example of a language that
provides no closure path expressions but linear recursion and thus can em-
ulate (unrestricted) closure path expressions. For RDF, there are few query
languages that fall into this class since RDF has, in contrast to XML, no dom-
inating hierarchical relation but many relations of equal importance. This
makes unrestricted closure often too unrestrictive for interesting queries.

3. Therefore, several RDF query languages provide generalized or reqular path
expressions. Here, full regular expression syntax including repetition and
alternative is provided on top of path expressions. E.g., ax. ((bl|c) .e)+ tra-
verses all paths of arbitrary many a properties followed by at least one rep-
etition of either a b or a c in each case followed by an e. Such regular path
expressions are provided, e.g., by Versa’s traverse operator, Xcerpt’s quali-
fied descendant, or the XPath extension with conditional axes [71]. The latter
work showed that regular path expressions are even more expressive than un-
restricted closure path expressions and a path language like XPath becomes
indeed first-order complete with the addition of regular path expressions.
Nevertheless, direct language support is not only justified by the ease of use
for the query author but also by complexity results, e.g., in [70] that show
that regular path expressions do not affect the complexity of a query lan-
guage such as XPath and can be evaluated in polynomial time w.r.t. data
and query size. Simulation of regular path expressions using triple patterns
(SPJ queries) and recursive views is possible but the resulting queries become
excruciatingly complex even for simple regular path expressions.

Summarizing, path expressions provide convenient means to specify structural
constraints in RDF queries and are therefore supported by a large number of
RDF query languages. However, surprisingly many RDF query languages ignore
(unrestricted or regular) closure path expressions. This is surprising as these path
expressions make query authoring (they allow avoiding recursive views) easier
and can be implemented efficiently as research on these constructs for XML
query languages has shown. In particular, unrestricted closure path expressions
can be implemented nearly as efficiently as basic path expressions using, e.g.,
tree labeling schemes [48] or closure indices.

Closure Subgraph Extraction. Closely related to (regular or unrestricted)
closure path expressions, is the issue of subgraph extraction: Since schema and
extent of RDF data are often, at best, only vaguely known, extracting interesting
portions of the data whose extent is not known statically (i.e., at query authoring
or compilation time) becomes an often encountered problem: E.g., given infor-
mation about authors and books, extract all information on one book, e.g., for
export into a bibliography management application or for styled display on a
Web site.

28 T. Furche et al.

It should be immediately clear, that closure subgraph extraction is easily
achieved in languages providing (regular or unrestricted) closure path expres-
sions. Regular path expressions are probably needed in the case of RDF to define
a reasonable subgraph, e.g., by traversing only certain relations, traversing only
a certain number of times, or stopping at resources with certain characteristics.

What about languages with only triple patterns and/or basic path expressions
such as SPARQL, RQL, or RDQL? Some of these languages, e.g., RQL, provide
built-in closure for certain fixed, predefined relations, cf. Section 5.1. SPARQL
provides one specialized language construct, DESCRIBE, that is intended to re-
turn relevant and representative information about resources, e.g., in the style
of concise bounded descriptions [96] where a resource is described by its imme-
diate properties and the immediate properties of all blank nodes reachable from
the resource without other named resources in between. The intuition here is
that further information about the latter blank nodes can not be retrieved in
further queries to the RDF data as they are not addressable from outside. The
SPARQL specifications, however, does not require DESCRIBE to return concise
bounded descriptions but leaves the extent of the returned information up to
the implementation. Nevertheless, DESCRIBE is the only construct in SPARQL
that approximates closure subgraph extraction.

Schema-aware Selection. The discussion of closure path expressions could
not be complete without looking at one common way of reducing closure path
expressions to basic expressions: It is assumed that closure is only relevant for a
few, predefined relations such as rdfs:subClassOf which are known to be transi-
tive. For these, the implementation transparently provides the closure.

This is just one of the effects when RDF query languages provide schema-
aware (in this case RDFS-aware) selection. An RDF query language may elect
to match the query not against the bare data graph but against the entailment
graph according to some set of entailment rules, e.g., the RDFS entailment rules.
E.g., RQL provides support for the specific entailment rules of RDFS with some
exceptions (acyclic subsumption hierarchy, only part of the axiomatic triples are
included). The latter exception is, in fact, needed to guarantee that query answer
are always finite, as the RDFS entailment rules in [53] include one axiomatic
triple for each integer i to handle rdf:_i properties. Query languages must, in this
case, opt for a reasonable restriction, e.g., to include only axiomatic triples for
integers ¢ < m with m the maximum size of a container in the data.

TRIPLE [93] takes schema-aware querying a step further by providing means
to parameterize a query with a “model” containing the rules to use for computing
the entailment graph against which the query is to be matched. This allows the
treatment of different schema languages in the same query framework.

Similarly, schema-awareness can be achieved in any RDF query language with
(recursive) views by providing a collection of rules implementing the schema en-
tailment rules. Xcerpt chooses this approach, as it makes schema access transpar-
ent for the query author. However, languages like Xcerpt and Versa that provide

RDF Querying: Language Constructs and Evaluation Methods Compared 29

regular path expressions allow the query author also to specify queries with ad-
hoc schema-awareness in the queries, e.g., by using a closure path expression like
(rdfs:subClass0f)+ instead of just rdfs:subClassOf.

None of these approaches forces the entailment graph ever to be materialized.
Rather, it may be lazily (i.e., in a goal-driven backward-chaining manner) com-
puted, partially materialized, or fully materialized depending on the needs of the
implementation and the query.

Optional Selection and Disjunctions. So far, we have considered pure con-
junctive queries only. Disjunction or equivalent union constructs allow the query
author to collect data items with different characteristics in one query. E.g.; to
find “colleagues” of a researcher from an RDF graph containing bibliography
and conference information, one might choose to select co-authors, as well as co-
editors, and members in the same program committee. On RDF data, disjunctive
queries are far more common place than on relational data since all RDF prop-
erties are by default optional. Many queries have a core of properties that have
to be defined for the sought-for data items but also include additional properties
(often labeling properties or properties relating the data items to “further” in-
formation such as Web sites) that should be reported if they are defined for the
sought-for data items but that may also be absent. E.g., the following SPARQL
query returns pairs of books and translators for books that have translators and
just books otherwise. If one considers the results of a query as a table with null
values, the translator column is null in the latter case.

SELECT ?writing, 7translator
WHERE { ?writing a books:Essay .
OPTIONAL { ?writing books:translator 7translator } }

Such optional selection eases the burden both on the query author and the
query processor considerably in contrast to a disjunctive or union query which
has to duplicate the non-optional part:

SELECT ?writing, 7translator
WHERE { ?writing a books:Essay .
?writing books:translator 7translator }
UNION
{ ?writing a books:Essay }

Furthermore, the latter is not actually equivalent as it returns also for writings
X with translators one result tuple (X,null). Indeed, this points to the question
of the precise semantics of an optional selection operator. One can observe that
the answer to this question is not the same for different RDF (or XML) query
languages. The main difference between the offered semantics in languages such
as SPARQL, Xcerpt, or XQuery lies in the treatment of multiple optional query
parts with dependencies. E.g., in the expression A A optional(B) A optional(C)
the same variable V' may occur in both B and C. In this case, if we just go
forward and use the B part to determine bindings for V' those bindings may

30 T. Furche et al.

be incompatible with C, i.e., prevent the matching of C'. The way this case of
multiple interdependent optionals is handled allows to differentiate the following
four semantics for optional selection constructs:

1. Independent optionals: Interdependencies between optional clauses is dis-
regarded by imposing some order on the evaluation of optional clauses.
SPARQL, e.g., uses the order of optional clauses in the query: The following
query selects essays together with translators and, if that translator is also
an author, also the author name.

SELECT “?writing, 7person, 7name
WHERE { ?writing a books:Essay .
OPTIONAL { ?writing books:translator 7person }
OPTIONAL { ?writing books:author ?person .
?person foaf:name ?7name } }

If we change the order of the two optional parts, the semantics of the query
changes: select all essays together with authors and author names (if there
are any). The second optional becomes superfluous, as it only checks whether
the binding of ?person is also a translator of the same essay but whether the
check fails does not affect the outcome of the query.

It should be obvious that this semantics for interdependent optionals is
equivalent to allowing only a single optional clause per conjunction that may
in turn contain other optional clauses. Therefore, the above query could also
be written as follows:

SELECT ?writing, 7person, 7name
WHERE { ?writing a books:Essay .
OPTIONAL { ?writing books:translator 7person
OPTIONAL { ?writing books:author ?person .
?person foaf:name ?name }

3}

This observation, however, only applies if the optional clauses are interde-
pendent. If they are not interdependent multiple optional clauses in the same
conjunction differ from the case where they are nested.

Algae seems to employ the same optional semantics as SPARQL, though
the language specification is rather vague at that point.

2. Mazimized optionals: Another form of optional semantics considers any order
of optionals: In the example it would return the union of the orders, i.e.,
either first binding translators than checking whether they are also authors or
first binding authors and author names then checking whether they are also
translators. This is more involved than the above form and assigns different
semantics to adjunct optionals vs. nested optionals. The advantage of this
semantics is that it is equivalent to a rewriting of optional to disjunctions
with negated clauses: A A optional(B) A optional(C) is equivalent to (A A
not(B) A not(C)) V (A Anot(B) AC)V (AABAnot(C)V (AANDBACQC).
This semantics ensures that the maximal number of optionals for a certain
(partial) variable assignment is used. This semantics has been introduces in
Xcerpt.

RDF Querying: Language Constructs and Evaluation Methods Compared 31

3. All-or-nothing optional: A rare case of optional semantics is the “all-or-
nothing” semantics where either all optional clauses are consistent with a
certain variable assignment or all optional variables are left unbound. This
semantics can be achieved in SPARQL and Xcerpt using a single optional
clause instead of multiple independent ones.

RDF Specificities. Following the look at general issues for query languages
in the specific context of RDF, this section closes the discussion of selection
constructs with a consideration of selection constructs for RDF specificities such
as blank nodes, collections, reified statements etc. RDF query languages should
support these specificities in some way (possibly only as syntactic sugar) to be
considered adequate to the RDF data model.

Blank Nodes. Among the considered specificities, blank nodes are the only ones
that introduce new challenges for the query language. For matching, blank nodes
are just like any other resource, but obviously do not match if a URI is specified
in the query. However, for result construction blank nodes have to be considered
specifically, see Section 5.2.

Collections and Containers are RDF’s constructs to represent sets, sequences,
and similar structures. The difference between containers and collections lies
in the fact that containers are always open (i.e., new members may be added
through additional RDF statements) and collections may be closed. Both con-
tainers and collections are merely vocabulary and representational conventions
but do not extend the data model. Le., a sequence container (A, B, C) is reduced
to the triples

_:1 rdf:type rdf:Sequence
_:1 rdf:_1 A
_:1 rdf:_2 B

:1 rdf:_3 C

Similarly, collections are reduced to binary relations of rdf:first and rdf:last:

rdf:first A
rdf:rest _:2
rdf:first B
rdf:rest _:3
rdf:first C

rdf:rest rdf:nil

W WNNEP =

However, these reductions result in lengthy and hard to understand triple pat-
terns. Furthermore, querying directly on these representations proves challenging
in many RDF query languages. Consider the simple query intent for selecting
all members of a container or collection C. This query cannot be expressed in
most RDF query languages if C' is a collection, as it requires an arbitrary-length
traversal of rdf:first and rdf:last edges (or direct support of collections) neither of
which most RDF query languages provide including SPARQL. In languages with
regular path expressions such as Versa or Xcerpt this query can be expressed
as C' rdf:first. (rdf:rest.rdf:first)* R with R selecting the contained re-
sources. In the case of containers, an RDF query language either needs direct

32 T. Furche et al.

support or some support for regular expressions over property URIs. SPARQL,
e.g., can express the query as

SELECT ?contained_resource
WHERE { ?C 7P 7contained_resource .
FILTER(regex(str(?P),
"http://www.w3.0rg/1999/02/22-rdf-syntax-ns#_\d+")) }

where the regular expression \d+ stands for one or more digits.

RQL is one of the few RDF query languages that provide specific constructs
for querying membership in containers and even position in ordered containers.
E.g., the above query can simply be expressed as R in C, selecting all resources R
in the container C'. Though RQL does not yet consider collections, this addition
should be straightforward.

Reification. Reified statements are another example for a modeling construct
that is reduced to several triples but is often convenient to query without re-
quiring the author to perform the reduction by hand. Indeed, some RDF query
languages such as SeRQL [22] and TRIPLE [93] provide specific syntax for reified
statements, that allows reified statements to be queried with the same syntax
as normal statements. SeRQL simply encloses a triple pattern in curly braces to
indicate reification.

5.2 Construction

Where the previous section has focused on how RDF query languages select
data from the underlying RDF graph, this section looks at the reporting of the
selected data including construction of new data.

Graph Construction vs. Selection-only. Surprisingly many RDF query lan-
guages are not closed, i.e., their result is not again RDF but often simply sets or
sequences of tuples representing alternative variable assignments. Examples of
such languages are RDQL [91] and Versa. SPARQL provides both just variable
assignments using the SELECT keyword and some limited form of graph con-
struction using the CONSTRUCT keyword which, however, falls short of even
the most simple grouping tasks.

Even when considering only variable selection blank nodes in results are an
interesting challenge for RDF query languages. Blank nodes can not be identified
from outside thus any “internal” identifier for a blank node returned as part
of a result provides at best existential information (i.e., there is a node that
fulfills a query). This makes grouping and aggregation even more important
than in relational queries. All the more surprising is the lackluster support for
these well-established language features in RDF query languages. RQL is one of
the few languages providing aggregation including grouping by sub-queries: The
following query selects all resources authored by “Julius Caesar” together with
the count of their properties.

RDF Querying: Language Constructs and Evaluation Methods Compared 33

SELECT R, count(SELECT @P FROM {R @P }
FROM {R}books:author{A}
WHERE A = "Julius Caesar"

The languages in the SPARQL family mostly lack any form of aggregation
thus requiring, e.g., post-processing of query results to solve such queries.

Graph Construction. A basic requirement for any query language is closure,

i.e., the ability to construct data in the same data model as the queried data. In

the case of RDF query languages, quite a number of languages focus on selection

only, e.g., Versa and RDQL. Others, such as SPARQL provide graph construc-

tion but only the most basic form. Most notably, SPARQL omits any form of

grouping which severely limits the sort of graphs that can be constructed.
The basic form of graph construction in SPARQL is

CONSTRUCT { 7R 7P 70 }
WHERE { 7R books:author "Julius Caesar". ?R 7P 70 }

Constructing a graph with one triple for each property of all resources with
author “Julius Caesar”. Indeed, SPARQL’s constructions are just triple patterns
again generating one instance of the triple pattern for each variable assignment
produced by the query.

In particular, this means that blank nodes in construct patterns are instanti-
ated once for each variable assignment. There is no way that triples for different
variable assignments “share” blank nodes.

Collections and containers. This separate handling of constructed instances pre-
vents any form of grouping including the construction of containers and col-
lections, for both of which some form of grouping is needed. Thus, it is im-
possible to answer simple queries such as “put the names of hotels for each city
in a container/collection” or link each city and all its inhabitants to a common
(blank) node. What SPARQL lacks is a proper “identity invention” facility, cf.
[3].

RQL provides specialized constructs for constructing collections and contain-
ers and allows arbitrary grouping using nested queries, but also lacks proper
treatment of blank nodes in construction.

Minimal Result Graphs. In addition to the support of blank nodes for group-
ing properties, blank nodes pose another challenge for graph construction in
RDF query languages: Naively, one might generate one result instance for each
blank node in the variable assignments. However, in many cases this leads to
unnecessary large result graphs.

E.g., consider the assignment set {(R — http://w3.org/, P — director,0 —
"Tim Berners-Lee"), (R — http://w3.org/, P — director, O — _:1)}. Then the
above SPARQL query constructs a graph containing two statements, one stating
that the W3C has director “Tim Berners-Lee” and one stating that the W3C
has some (unknown or unspecified) creator. However, the second statement is
entailed by the first one and therefore superfluous. A minimal result graph

34 T. Furche et al.

would only retain those blank nodes that are not “compatible” and thus entailed
by the other resources in the graph.

Conditional construction. When constructing a result graph, the shape of the
graph is often closely linked to the variable assignments. This goes, again, beyond
mere instantiation of variables at predefined positions. E.g., one might only want
to include a subgraph if a certain optional variable is bound. This ability of a
query language is referred to as conditional construction. One can essentially
distinguish three forms of conditional construction:

1. Unscoped optional construction is used, e.g., in SPARQL: A triple containing
optional variables is only included if bindings for all optional variables are
provided in the current variable assignment. The drawback of this approach
is that it does not allow the existence of a binding for an optional variable to
have effect beyond triples using that variable. E.g., it is not possible to add
the statement that a resource is (of type) translated if a translator exists.

2. Scoped optional construction allows this sort of queries by providing an
explicit optional construction construct (e.g., optional in Xcerpt construct
terms) with a scope. In RDF, this scope is usually a set of triples that are to
be included if a binding for the optional variable is present. In contrast to
the first case, not all of these triples have to contain the optional variable.

3. Full conditional construction finally uses conditional constructs such as if
...then or case with arbitrary boolean expressions over the query variables.
E.g., one might want to add the triple 7P rdf:type my:Teen for persons
with ?7Age between 12 and 18 and the triple ?P rdf:type my:Adult for
older persons.

Notice, that all three forms can be expressed if the query language allows
disjunction to span selection and construction as is the case in most rule-based
query languages such as Xcerpt, Algae, or Triple. In SPARQL, however, dis-
junction is limited to selection (i.e., WHERE clauses) thus making (2) and (3)
inexpressible in SPARQL.

Construction of XML Results. If one looks at the RDF data access use
cases [35] and considers often cited usage for RDF query languages, the need
for a bridge between RDF queries and XML processing becomes evident. Some
languages address this by integrating RDF and XML querying, e.g., Xcerpt or
approaches such as [87]. Such languages become versatile in the sense of [27].
Most RDF query languages, however, do not consider the intertwining of
XML and RDF queries. Still, the need for at least a means to deliver XML as
result of an RDF query is evident. SPARQL, e.g., defines a static schema for
representing answers in XML, cf. [9]. Such a static schema can then serve for
further processing by means of XML query languages or other processing tools.

5.3 Procedural Abstraction

This section closes with a brief look at procedural abstraction mechanisms for
RDF query languages. Procedural abstraction in form of database views or rules

RDF Querying: Language Constructs and Evaluation Methods Compared 35

is a common feature of both programming and expressive query languages. For
the Semantic Web to succeed, an efficient rule layer to implement large scale
reasoning tasks is essential. Separating querying and (rule) reasoning, however,
is often infeasible, in particular if the extent of the queried data depends on
the reasoning and is not known a priori (as is the case, e.g., in crawling RDF
queries).

In addition, rules or views are useful for the query author for all the reasons
traditional procedural abstraction has become commonplace in programming
languages (separation of concern, reuse, etc.).

Therefore, quite a number of RDF query languages provide some form of rules
or views. TRIPLE and Xcerpt, e.g., use deductive rules similar to Logic Program-
ming or Datalog, Algae uses production rules, cf. Section 6 on the evaluation of
these different rule paradigms.

Both, TRIPLE and Xcerpt use rules to provide transparent RDFS-aware se-
lection as discussed above in Section 5.1, but also allow the user to define their
own rules expressing, e.g., application semantics already on the query layer.

A further important use for rules is the integration and mediation of hetero-
geneous data. The data may differ in format, schema, or just representation, if
the schema is flexible as most RDFS schemata. In these cases, rules can ease
data integration, e.g., if mappings between the different schemata are provided
in some form, cf. [89]. They can also perform data normalization transparent to
the query user, i.e., allow the user to query representational variants without
considering all these variants in each query anew.

6 Query Evaluation

Methods for RDF query evaluation differ in several aspects:

— RDF data may be stored in memory or on disk.

— Query evaluation may be distributed over a network of collaborating nodes,
or it may be local.

— RDF triples may include provenance information. In this case, they are called
quadruples (s, p,o,c) of subject, predicate, object and so-called context in-
formation. Alternatively, the provenance information may be associated with
entire subgraphs rather than with triples.

— RDF graphs can be stored as decomposed triples or quadruples in a relational
database engine, as documents on a file system, or as entire graphs in an
object oriented or semi-structured database. The type and schema of the
storage have a high influence on the efficiency of query processing.

— Queries may either consist of single RDF statements with variables sub-
stituted for any combination of subject, predicate and object (e.g. (?X,
foaf:knows, ?Y)), or they may consist of conjunctions of such statements,
then referred to as conjunctive queries. In the latter case, multiple occur-
rences of the same variable are evaluated by joins and allow querying graph
patterns.

36 T. Furche et al.

In this article we mainly focus on non-distributed answering of RDF queries
on large RDF repositories stored on disk. Both querying graphs with and with-
out provenance information are discussed, and different storage methods are
examined. Both single statement queries and conjunctive queries consisting of
multiple RDF statements are considered.

6.1 Storage of RDF Data

The first issue highlighted in the field of query evaluation is data storage: a closer
look is taken at three alternative approaches to storing RDF data. First, light is
shed on the use of the Berkeley database for storing RDF in the Jena framework,
second several proposed methods for using relational database engines for RDF
storage are reproduced, and third approaches for deploying object oriented and
object relational databases for RDF storage are described. Taking into account
their widespread use, it is not surprising that the greatest number of suggestions
and implementations of RDF storage is based upon relational database engines.
In each of the sections, the impact of the choice of the storage method on query
evaluation is highlighted.

RDF Storage in Berkeley Databases. According to the directory of the
Free Software Foundation'?, the Berkeley Database is

[..] an embedded database system. Its access methods include B+tree,
Extended Linear Hashing, fixed and variable-length records, and Persis-
tent Queues. Berkeley DB provides full transactional support, database
recovery, online backups, and separate access to locking, logging and
shared memory caching subsystems. |[..]

The initial database back-end for the Jena RDF framework [47] supports
both relational database back-ends and the Berkeley database. The relational
database schema for storing RDF statements in Jenal (the first version of Jena)
is very efficient in space, because it does not contain any redundant information.
In contrast, each RDF statement is stored three times in the Berkeley database
— using all of subject, predicate and object as hash-keys. According to [99] the
redundant storage yields a significant enhancement of query performance, and
from this experience the authors of Jena decided to not fully normalize the re-
lational database schema for Jena2 (the second version of the Jena RDF Frame-
work). Besides Jena, also the Redland RDF Application Framework [8], rdfDB
and RDFStore make use of the Berkeley database.

Storage of RDF at the aid of Relational Database Engines. The majority
of suggestions for permanently storing RDF data concern relational database
engines.

RDF storage in Jenal and Jena2 The most straight-forward approach to storing
RDF in a relational DBS is to create a single table with the columns subject,

4 http://directory.fsf.org/

RDF Querying: Language Constructs and Evaluation Methods Compared 37

predicate and object, containing all statements of the RDF graph. In order to
save space, the relational database schema of Jenal differs from this simplistic
approach in that the schema is normalized to contain each resource and literal
only once. Therefore a resource table and a literals table are introduced, contain-
ing a column for a short primary key, and a column for resources and literals,
respectively. The subjects, predicates and objects of the statement table refer to
these keys.

Although this schema is very efficient in space, retrieving the subject, object
and predicate of a statement already requires three joins between the statement
table, the resource table and the literals table. Therefore the relational database
back-end of Jena2 [99] stores literals and resources directly in the statements
table unless they supersede a configurable maximum size. As a result, short
URLs may be stored multiple times in order to avoid joins, but large URLs are
only stored once in order to save space. There are several other optimizations
that have been incorporated into Jena2:

— Multiple tables for different graphs. RDF applications may wish to store data
which is seldom accessed together in different tables, and data which is often
queried together in the same tables. “The use of multiple statement tables
may improve performance and caching” [99, Section 3.1].

— Property tables. In RDF graphs, there are usually sets of statements with
the same subject that occur frequently together. An example would be the
properties foaf :name, foaf:nick, foaf:knows, etc. of the FOAF vocabu-
lary. So as to provide efficient access to these common statement patterns,
they are stored in special property tables. For each common statement pat-
tern, one property table is provided, and common statement patterns may
be automatically detected in RDF Graphs.

— Reified statements tables. In Jenal reified statements are not stored in their
reified form (which would require four ordinary statements for one reified
statement), but in the statements table with two extra columns — one of
them indicating whether the statement is reified, and the other containing
the statement identifier. Since also reified statements constitute common
access patterns, Jena2 stores reified statements in property tables.

Storage of RDF data in 3store 3store [50] is a C-library developed at the Uni-
versity of Southampton with a MySQL database back-end. It is intended for
very large RDF databases and is being tested with over 30 million RDF triples
holding knowledge about authors, publications and institutions in UK Com-
puter Science research. The database schema employed is very similar to that of
Jenal. It consists of a statements table, and a table for resources and literals. As
in Jenal, literals and resources are not directly stored in the statements table.
Instead a portion of their MDb5 hash values are stored as 64-bit foreign keys in
the statements table. The use of the hash function for literals and URIs and
the storage in extra tables guarantee lower overall space of the database, few
string comparisons, and a uniform length of the records in the statements ta-
ble, “an optimization which benefits the MySQL database engine” [50, Section

38 T. Furche et al.

4.3]. Although the probability of hash collisions is very low (10710 for 5 - 108
resources), hash collisions are detected and reported at assertion time. [50] does
not mention how hash collisions are corrected. Hash collisions among homony-
mous literals and URIs are averted by splitting the hash space into two equally
large parts, one for literals, the other for URIs.

The most recent version of 3store [49] allows the formulation of queries in
SPARQL, which supports the concept of named graphs. Therefore, the state-
ments table contains an additional row which indicates the graph that the state-
ment belongs to (triples with such provenance information are often called quads.
Besides the statements table, and the tables for literals and URIs, 3store also
stores the languages and data types of literals in special tables.

RDF Storage in Sesame Sesame is an RDF database with support for Schema
inferencing and querying using the SeRQL query language. By introducing an
additional Storage and Inference Layer (SAIL) between the RDF storage system
and the applications accessing the data, Sesame is designed to support a wide
variety of different storage possibilities. In [23] an implementation of SAIL in
the open source databases PostgreSQL and MySQL is presented.

The PostgreSQL database schema makes use of transitive sub-table relations,
which are a special PostgreSQL feature, to model RDFS’ property and class
subsumption hierarchies. A table holding instances of a class C; which is a sub-
class of class (5 inherits from the table for C5 — in other words it is declared
as a sub-table of C3. A query issued on the contents of table Cs is also eval-
uated on the entries of table Cy. As Jenal and 3store, Sesame stores resource
URIs and literal values only once to save space. An important difference be-
tween Sesame RDF storage and the solutions discussed so far is that statements
are not stored in a single statements table consisting of subject, property and
object. Instead, an extra table is created for each property and class which is
used in the RDF graph. Since this procedure requires the insertion of new tables
to the schema when RDF statements are added which use properties or classes
which have not appeared in the RDF graph so far, we call these kinds of schemas
dynamic schemas as opposed to static schemas as used in 3store and Jena. An
RDF graph with FOAF data would thus include tables foaf:knows contain-
ing all pairs of person URIs for persons knowing each other, tables foaf :name,
foaf :nick for storing ordinary names and nick names, etc. are created. For each
class used in the RDF schema, tables such as foaf :Person, foaf :Document, etc.
Data about the schema is stored in special tables rdfs:Class, rdfs:Property,
rdfs:domain, rdfs:range, etc. A performance comparison with a static Post-
greSQL schema has shown, that schemas with a single statement table are faster
when inserting or updating data from the RDF graph. Especially the insertion of
new rdfs:subClass0f statements is expensive, since it requires rebuilding the
parts of the subclass-hierarchy modeled by PostgreSQL sub-tables. On the other
hand, the authors of [23] expect querying to be faster in the dynamic database
schema.

The alternative MySQL implementation of the Sesame Storage and Infer-
ence Layer uses a static database schema. This schema is significantly more

RDF Querying: Language Constructs and Evaluation Methods Compared 39

complex than the static schemes of 3store and Jena in that it contains tables
dedicated to holding the predefined RDF/S properties rdfs:subProperty0f,
rdfs:subClass0f, rdf:type, etc. Although not explicitly mentioned in [23],
administering this schema information in separate tables enhances the perfor-
mance of RQL schema queries such as subClassOf (Artist). The fact that RQL
is a language that explicitly supports the straightforward formulation of schema
queries, and that the other storage engines are coupled with languages with lower
support for schema queries may be an explanation for the different database
schemas employed.

RDF Storage in RDFSuite RDFSuite is a set of tools for querying, validating and
storing RDF data. It natively supports the RQL query language. In this para-
graph, its storage system is briefly examined. RDFSuite uses the PostrgreSQL
DBS for storing RDF data, and its schema is a dynamic schema resembling
the PostgreSQL schema of Sesame. Sub-table relationships are used to imple-
ment subClass0f and subProperty0f-relationships among classes and proper-
ties. Since RQL provides syntactic means specifically geared to querying RDF
Schema, such queries must be evaluated quickly. Therefore, the schema informa-
tion is kept in separate tables such as subProperty, subClass, Property, Class
and Type. In contrast to the schemas described above, Namespaces are stored
in a separate Namespace table in order to save space. This namespace table is
referenced from the other tables. A database is built from an RDF-description
using a two phase algorithm: In the first phase, properties and classes occur-
ring within the RDF data are extracted, and from this information the database
schema is constructed. In the second phase this schema is populated with the
instance data from the RDF file.

Path Based Storage of RDF Data Matono et al. [73] point out that storing
RDF graphs as decomposed sets of triples is efficient for evaluating single state-
ment queries, but is inefficient for path based queries. Whereas in single state-
ment queries one or two items of subject, predicate and object are omitted,
path based queries as defined in [73] are finite sequences of arcs (vg,v1), (v1,v2),
.oy (Vk—1, vk) from a source node vg to the destination vi. Answering path based
queries of length k at the aid of a single statement table requires k£ — 1 joins over
the table. So as to improve performance, Matono et al. suggest the following
procedure:

— The RDF graph to be queried is separated into five subgraphs named CI,
PI, T, DR, G containing the class hierarchy (rdfs:subClass0f statements),
the hierarchy amongst properties (rdfs:subProperty0f), type information
(rdf:type), domain and range information of properties and all remaining
statements, respectively. Only the paths occurring within G are explicitly
saved within an appropriate relational table. For the hierarchical subgraphs
CI and PI an interval numbering scheme is applied in order to efficiently
answer queries concerning their transitive closures. Since the subgraphs T
and DR are flat, it does not make sense to extract paths from them.

40 T. Furche et al.

— For each resource r in the graph G all paths starting at any root node of
G and ending at r are saved. In order to be able to efficiently deal with
path based queries that start with a wild card (e.g. “give me all titles of
books authored by someone”), path expressions are saved in reverse order.
Moreover, only the names of the predicates are reflected within the path
expressions, whereas node names are omitted. An example path expressions
saved in the database would thus be *#title<#author. The relational table
containing the path expressions consists of two columns, one holding path
identifiers, and the other holding path expressions such as the one given
above. In a resource table, resources are associated with paths that end at
this resource.

— Path queries are evaluated by concatenating their predicate names in re-
verse order and subsequently comparing the resulting string with the path
expressions stored in the path expressions table.

The authors of [73] present a performance comparison with the Jena2 frame-
work which suggests that for path queries of length greater than 3, path based
storage of RDF data allows significantly faster query processing. For queries of
length 1 and 2, Jena2 performed better. The resource table associating resources
with path identifiers is significantly larger than the actual number of resources,
especially in the case of deep and densely interwoven graphs. A further issue
not addressed within [73] are path queries that do not start with wildcard nodes
(e.g. “Find all titles of books and their authors”). Since the stored paths only
contain predicates and no node identifiers, answering such queries still requires
joins over the statements table.

RDF Storage in Object Databases. In [20] Bonstrom et al. propose to di-
rectly store RDF graphs modeled in an object oriented programming language
in an object oriented database (OODB). They compare the performance of all
kinds of queries including schema and hybrid queries expressed in RQL on top
of the OODBS Fastobjects with the performance of the same queries on top
of the relational MySQL database back-end of Sesame. Due to the similarity
of RQL and OQL, RQL queries can be straightforwardly translated to OQL.
All resources (URIs for nodes and predicates as well as literals) are represented
as objects, and the statements of the RDF graphs are stored in the OODB as
“an object /reference structure”. The performance comparisons conducted in [20]
suggest that directly storing an RDF graph in an OODB system considerably
speeds up query evaluation, especially for schema and hybrid queries. Perfor-
mance comparisons with the PostgreSQL back-end of Sesame and other RDF
storage systems mentioned above have not been mentioned in the article.

Index Structures for RDF. The approaches considered so far use stan-
dard database management systems (OODBS and RDBS) or standard libraries
(Berkeley DB) to efficiently store and retrieve RDF data on disk. However, some
research has already been carried out on developing index structures specifically
aimed at RDF. In [72] Matono et al. propose to use suffix arrays to efficiently

RDF Querying: Language Constructs and Evaluation Methods Compared 41

find paths in RDF graphs. In [52] index structures for RDF statements with
context information (also called RDF quads or RDF triples with provenance
information). In this section, both of these approaches are briefly reviewed and
discussed.

Indexing RDF and RDF Schema with Suffiz Arrays Suffix Arrays [68] are index
structures used to search for a pattern P of length p in a larger string M of length
m. All suffixes of M are sorted in lexicographical order, and the suffix array is
efficiently stored as the string M and a sequence of indexing points pi,...,pm
where p;,1 < i < m is the position of the ith suffix (in lexicographical order)
in the original string m. Suffix arrays allow to find all instances of P in M in
O(p - logm).

Matono et al. propose to extract all paths from an acyclic RDF graph that
start at root nodes (nodes without incoming edges) and end at leaf nodes (nodes
without outgoing edges) and to represent them as strings by concatenating
their labels (or identifiers for their labels). The alphabet X of these strings
is thus the set of resource URIs and literal values of the Graph. They define
the notion of suffix arrays for directed acyclic graphs as a list of indexing points
(pai,po1), ..., (pa;, po;) where pa; denotes the path that the ith suffix (in lex-
icographical order) appears in, and po; denotes the position within pa;. Paths
within the queried RDF graph matching a particular path query can be found
by performing binary searches on the suffix array.

In order to cope with schema queries efficiently, Matono et al. divide the
RDF graph into several subgraphs according to the type of predicates, see [72]
for details. Performance evaluations presented in [68] indicate that depending
on the type of path queries, the proposed indexing scheme speeds up query
execution by a factor in between two and nine.

Index Structures for RDF Quadruples Web applications processing data from
several different resources usually are interested in tracing where the information
originated from in order to judge its trustworthiness. Furthermore, it is often
desirable to perform substring searches on large amounts of Semantic Web data.
While RDF storage systems making use of the Berkeley database get by with
three hashes for the efficient look-up of triples for two given items of the triple,
[62] suggest index structures for efficiently searching for substrings (keyword
index) within resource and literal values and for looking up quadruples (quad
indezes) based on any combination of subject, predicate, object and context
information.

Since resources and literals are referenced from both the keyword index and
from the quad indexes, nodes in the RDF graph are mapped to shorter object
identifiers which are stored in the indexes instead. Substring matches are deter-
mined by using an inverted index on all words appearing as tokens within the
queried RDF graph. The inverted index allows to look up lists of object iden-
tifiers of resources that a given word appears in and also provides occurrence
counts for the words that can be used to optimize the join order of conjunctive
queries.

42 T. Furche et al.

The quad indexes allow to efficiently look up RDF quadruples matching a
given query quadruple in which some of the four entries may be omitted. Query
quadruples such as (?:rdf :type:?:http//example.com/stmts.rdf), which finds
all rdf:type statements originating from the context http//example.com/
stmts.rdf, can be categorized into 2* = 16 access patterns, depending on which
of the four elements of the quadruple are given. A naive implementation would
construct 16 indexes to allow the efficient evaluation of queries falling in any
of the 16 categories, but Harth et al. show that by taking advantage of prefix
queries in B+4-trees, only 6 “combined” indexes suffice for this purpose.

6.2 Schema- and Reasoning-Aware RDF Querying

As has been pointed out in Section 4, RDF languages can be distinguished by
the fact whether they provide constructs taking advantage of RDF/S and OWL
reasoning. While the major part of languages does not provide direct means of
finding e.g. all subclasses of a given class, or all instances of a class, others do
provide such features (e.g. RQL).'® But also the languages of the SPARQL family
do not reject the RDF/S semantics, but simply maintain that the computation
of derived facts should be provided by an underlying graph model (e.g., by
pre-materialization or on-the-fly construction performed by the storage layer).
Therefore, an overview over several approaches of implementing especially the
RDF/S semantics are given in this section.

One step in this direction that has already been discussed in Section 6.1, is
the use of dynamic relational database schemes containing tables for each de-
fined rdfs:Class holding all the instances of the class. This allows to efficiently
retrieve all instances of a given class. Additionally, the use of sub-table relation-
ships within database schemes allows the implementation of the rdfs9 inference
rule as defined in [53]. Other RDF/S inference rules have not been covered so
far. There are mainly three approaches that deal with the implementation of the
RDF/S semantics:

— Labeling schemes can help to implement the RDF/S entailment rules con-
cerning the rdfs:subClass0f and rdfs:subProperty0f relationships, and
any other relationship that is defined to be transitive.

— Precomputation of derived facts (forward chaining). Forward chaining can be
used to precompute implied RDF statements, not contained in the original
RDF graph that are derived from any of the RDF/S rules or even from user-
defined rules. This approach trades memory space for execution time, and is
especially useful, if the queried graph and its schema information are stable
and if the number of queries issued on the graph is high. Note, however, that
this approach requires that RDF triples and therefore the Web sites involved
are known beforehand. Indeed, this computation model is not suitable for
crawler queries where the extent of the data is extended at query time.

15 Note that none of the examined languages provides constructs for taking advantage
of OWL semantics. However, some research on how to combine query languages with
OWL reasoners has already been carried out.

RDF Querying: Language Constructs and Evaluation Methods Compared 43

However, since many RDF query languages including SPARQL and RDQL
do not support such queries the computation model is relevant for RDF
querying.

— Backward chaining. Like forward chaining, backward chaining can be used
to implement any kind of rules including all RDF/S entailment rules. Back-
ward chaining is preferred when the underlying graph changes frequently,
and when the the number of queries is low. Xcerpt uses backward chain-
ing in combination with simulation unification to evaluate programs. The
evaluation of Xcerpt is not treated in this article for the sake of brevity, cf.
[28, 90].

Labeling Schemes for RDF /S Reasoning. Christophides et al. advocate the
use of labeling schemes in conjunction with relational database storage of RDF
graphs for “avoiding costly transitive closure computations over voluminous class
hierarchies” [32] in Semantic Web data bases such as the Open Directory Portal.
The use of labeling schemes reportedly results in a decrease in query execution
time for transitive closure computations of 3-4 orders of magnitude compared
to evaluating such queries on a dynamic relational database scheme such as the
one described in [55].

In [32] three types of labeling schemes are compared with respect to their
suitability for supporting ancestor/descendant (which is a more general form of
subclass queries), adjacent/sibling, and nearest common ancestor queries. Some
of the results concerning the use of these labeling schemes for both hierarchi-
cal subsumption relationships and those structured as directed acyclic graphs
(DAGs) are recapitulated here and an example is given in Figure 3.

— Bitvector schemes assign bitvectors of length n (n is the number of nodes
within a DAG to be represented by the scheme) to the nodes. The ith node
in the DAG has a 1 bit at the ith position, and a 1 bit at the position
k, if the kth node is one of its ancestors. All other positions within its
bitvector are 0. Bitvector schemes allow subsumption checking in constant
time (the length of the bitvectors is assumed to be constant), but finding all
ancestors, descendants or siblings can only be achieved in O(n). Additionally,
the size of the bitvector must be adjusted, when new classes are added to
a class hierarchy, making this method inappropriate for class hierarchies in
the presence of dynamic updates. As Figure 3 shows, the bitvector scheme
can be naturally extended to account for multiple inheritance among RDF
classes.

— Prefiz schemes assign labels to nodes within a class hierarchy (or DAGs in
general), such that for each node N and an arbitrary ancestor A the label of
A is a prefix of the label of N. Probably the most known representative of
prefix schemes is the Dewey Decimal Encoding (DDE). A major advantage
of prefix schemes is their support for dynamic updates. New sibling nodes
can be added as long as the total number of siblings does not exceed the
size of the alphabet chosen (in the figure the alphabet is X' = {1,...,9}).
The major disadvantage is the inflationary label size for class hierarchies

44

T. Furche et al.

which are not tree-shaped: Each non-spanning-tree edge in Figure 3 causes
the node it originates from and all of its descendants to inherit the label of
the node the non-spanning-tree edge points at.

— Interval schemes assign lower and upper bounds to nodes, such that for a

node N and an arbitrary ancestor A, the interval of IV is contained within
the interval of A, and for two sibling nodes the intervals are disjoint.In the
interval based labeling scheme of Agraval et al., the label of a node v is
composed of a pair of numbers (min(v), post(v)) where post(v) is the post-
order number of the node and min(v) is the minimal post-order number of
the descendants of v. As shown in Figure 3, the labeling scheme by Agrawal
et al. can also be extended to handle DAGs. In contrast to the downward
propagation of labels in the prefix schemes, labels are propagated upwards
when non-spanning-tree edges are to be reflected (e.g. the node ex:d inherits
the label of the node ex:g because there is a non-spanning-tree edge from
ex:g to ex:d. The top node ex:a does not need to inherit the label [1,1]
of ex:g, since [1,1] is already included in the interval [1,7] of ex:a.

0000001

spanning-tree-edges: —_—

non-spannin-tree-edges: =—— @— @ —

1
[1.7]

-SLbe Of rdfs:suClassOf
ass rdfs:sudassOf

0000101
12

0000011
11

[5.51[1.3] 4 0001001

[1.4]

in

13
[6.61[1,1]

0010111
111, 12
[1.3]

0110111
1111, 12
[1.2]

Bitvector Scheme
1710711 N Dewey Prefix Scheme
11,1213 exg Agrawal Interval Scheme

[1.1]

Fig. 3. Labeling schemes for DAG sub-class hierarchies

Note that all of the above labeling schemes cannot be used to represent cycles
the subsumption graph. An alternative labeling scheme for graphs with cycles

is the 2-hop labeling [36].

Forward Chaining. The most apparent approach to calculating the transitive
closure of rdfs:subProperty0f and rdfs:subClassOf relationships and other
implied RDF statements derivable by inference rules is the following: The body
of a rule is instantiated with facts from the knowledge base, such that it becomes
true (if possible) and the instantiated head of the rule is added to the knowledge
base if it is a new fact. In this way, each of the rules is applied to the knowledge

RDF Querying: Language Constructs and Evaluation Methods Compared 45

base in turn, until a complete run over the rules does not produce any new
derived statements. Once that the application of all rules does not produce any
new statements, one can be sure that all implied RDF/S statements have been
added to the knowledge base.

Let F' be the number of facts, R the number of rules and C' the average
number of conditions within the head of the rules. Then the maximum number
of comparisons between facts and conditions for one loop over the rules is R* F©.
The overall complexity additionally depends on the number of loops that need to
be performed. Several proposals for improving runtime behavior can be thought
of:

— Applying the rules to the entire knowledge base in each round is not nec-
essary. It suffices to consider only those instantiations of the inference rules
that make use of a new fact — that means a fact that has been added after
the last application of the rule. In doing so, the specific semantics of RDF
blank nodes should be considered.

— If the body of an inference rule could almost be completely instantiated in
one round, the information about the successfully instantiated part gets lost
before the rule is reconsidered. By remembering partial instantiations of rule
bodies one can treat space for time.

— Especially in the case that rules are complex, the bodies of different rules
may share common parts of the condition. In the naive algorithm these sub-
conditions are evaluated once for each rule.

Note, that forward chaining might be difficult to realize if the Web sites in-
volved and thus the RDF facts are not all known before hand as is the case, e.g.,
with crawler queries.

CWM and Pychinko CWM!6 (an acronym for Closed World Machine) is a
Python command line tool for RDF documents that can — amongst other things —
convert between different formats (currently the serializations Notation3, RDF /-
XML and NTriples are supported) and store triples in a queryable database.
The more interesting feature of CWM for this section is its ability to do forward
chaining. Given the following rule and data, CWM will infer that :Frank, :Bob,
and :Sam are :Male (the shorthand a represents an rdf:type property).

{ ?x :son 7y } => { 7y a :Male }.
:Mary :son :Frank, :Bob, :Sam.

Since CWM does not employ any optimization techniques for forward chain-
ing, it does not perform very well on large sets of assertions and rules. The
authors of Pychinko!'”, a CWM clone, improved the performance of CWM by
implementing the RETE-algorithm [42].

16 nttp://infomesh.net/2001/cum/
7 http://www.mindswap.org/~katz/pychinko/

46 T. Furche et al.

The RETE-Algorithm The RETE-algorithm was conceived by Charles Forgy
at Carnegie Mellon University in 1979, and formed the basis for new develop-
ments in the ambit of expert systems. Its core idea is to (1) merge (parts of)
the antecedents of rules if they are the same, to (2) memorize possibly partial
instantiations of antecedents of rules, and to only consider new facts within each
loop over the set of rules. The data structure at the core of the RETE algo-
rithm is a network computed from the antecedents of the rules. An example of
this data structure for RDF/S entailment rules and some RDF/S statements is
given in Figure 4. The network reflects the RDF/S inference rules rdfs9 and
rdfs11 and contains two kinds of nodes: a-nodes representing simple conditions
and [-nodes representing conjunctions over a-nodes. The a-nodes are populated
with matching facts from the knowledge base (an RDF graph), and beta nodes
are populated if a conjunction of simple conditions becomes true. The set of
initially known facts is given at the top right of Figure 4. Note that although
rdfs9 and rdfsil are very simple entailment rules, the principles of the RETE
algorithm already allow for some optimizations. Both rules share a common an-
tecedent (the node rdfs:subClass0f (X,Y)), and partial instantiations of rules
are memorized (e.g. the instantiation (ex:mammal, ex:animal), which will help
to derive additional implied RDF statements in the next loop).

[rdf:type(a,X)] [rdfs:subClassOf(X,Y)] Knowledge Base:

@prefix ex: http://fexample.com
(ex:leo, ex:lion) (ex:lion, ex:mammal) alpha-Nodes rdfs:subClassOf(ex:lion, ex:mammal)
(ex:mammal, ex:animal) rdfs:subClassO :anil
rdf:type(ex:leo, ex:lion)
[rdf:type(a,X) and rdfs:subClassOf(X,Y)] [rdfs:subClassOf(X,Y) andrdfs:subClassOf(Y,Z)]
beta-Nodes
(ex:leo, ex:lion) and (ex:lion, ex:mammal) (ex:lion, ex:xmammal) and (ex:mammal, ex:animal)

rdftype.Y) rdfs:subClassOf(X.2) } e tone ©

(ex:leo, exmammal) (ex:lion, ex:animal) knowledge base

Fig. 4. Memorization of partially instantiated antecedents and combination of rule
antecedents in RETE algorithm

As Figure 4 shows, the new facts rdf :type(ex:1leo, ex:mammal) and rdfs:
subClassOf (ex:1lion,ex:animal) can be inferred. Adding these new facts to
the knowledge base as in Figure 5 shows that the amount of comparisons to
be performed is low: The derived facts must only be compared with the two
a-nodes, and trigger one new instantiation for each a-node and a new instantia-
tion for the left S-node, such that the last implied statement rdf :type (ex:1leo,
ex:animal) can be derived. Note that also the removal of facts (RDF state-
ments) from the knowledge base (the RDF graph) can be efficiently handled by
the RETE-algorithm in the same way as the addition of new facts.

RDF Querying: Language Constructs and Evaluation Methods Compared 47

[rdf:type(a,X) J [rdfs:subClassOf(X,Y) J Original Knowledge Base:
@prefix ex: http://example.com
(ex:leo, ex:lion) (ex:lion, ex:mammal) alpha-Nodes rdfs:subClassOf(ex:lion, ex:mammal)
+(ex:leo, ex:mammal (ex:mammal, ex:animal) rdfs:subClassOf(ex:mamal, ex:animal)
+(ex:lion, ex:animal) rdf:type(ex:leo, ex:lion)
New facts:
+ rdfs:subClassOf(ex:lion,ex:animal)
+ rdf:type(ex:leo, ex:mammal)
[rdf:type(a,X) and rdfs:subClassOf(X,Y)] [rdfs:subClassOf(X,Y) andrdfs:subClassOf(Y,Z)]
beta-Nodes
(ex:leo, ex:lion) and(ex:lion, ex:mammal) (ex:lion, ex:mammal) and (ex:mammal, ex:animal)
+(ex:leo, exmammal) and (ex:mammal, ex:animal

(ex:leo, ex:mammal) (ex:lion, ex:animal) knowledge base

+(ex:leo, ex:animal

rdf:type(a,Y) rdfs:subClassOf(X,2) } mziidﬁi'i to be

Fig. 5. Addition of new facts to the rete decision tree

Although the optimizations of the RETE algorithm have a greater impact
for a large number of rules with complex antecedents, its implementation in
Pychinko allegedly yields a five-fold performance increase. Therefore its applica-
tion to larger and more involved rules for Semantic Web reasoning seems to be
promising.

7 Conclusion

Although this survey only considers a (subjectively chosen) subset of the RDF
query languages proposed so far, it makes quite clear that the research commu-
nity has not yet settled on a dominant paradigm to querying Semantic Web data
and that this field of research is changing quite quickly. Language constructs and
approaches to querying RDF differ both in their availability (e.g. regular path
expressions) and also in their exact semantics (e.g. the optional construct). The
widespread use of the query languages within Semantic Web projects, which will
most probably take place within the upcoming years, will allow to judge the
real-world utility of the presented approaches and constructs and will ultimately
establish the most usable amongst them.

This article presents some interesting methods for accelerating RDF query
evaluation. With the amount of available Semantic Web data increasing expo-
nentially, evaluation methods, efficient storage and retrieval and index structures
specifically aimed at RDF become more important for realizing any of the pro-
posed languages.

Acknowledgments

This research has been funded by the European Commission and by the Swiss
Federal Office for Education and Science within the 6th Framework Programme
project REWERSE number 506779 (cf. http://rewerse.net).

48

T. Furche et al.

Bibliography

(1
2]
3]

(4]

RDFQL Database Command Reference. Online only, 2004.

iTQL Commands. Online only, 2004.

S. Abiteboul and P. C. Kanellakis. Object Identity as a Query Language Prim-
itive. Journal of the ACM, 45(5):798-842, 1998.

D. Backett. Modernising Semantic Web Markup. In Proc. XML Europe, April
2004.

J. Bailey, F. Bry, T. Furche, and S. Schaffert. Web and Semantic Web Query
Languages: A Survey. In J. Maluszinsky and N. Eisinger, editors, Reasoning
Web Summer School 2005, pages 35—133. Springer-Verlag, LNCS 3564, 2005.
N. Bassiliades and I. Vlahavas. Capturing RDF Descriptive Semantics in an
Object Oriented Knowledge Base System. In Proc. International Word Wide
Web Conference, May 2003.

D. Beckett. Turtle - Terse RDF Triple Language, February 2004.

D. Beckett. The Design and Implementation of the Redland RDF Application
Framework. 2001.

D. Beckett and J. Broekstra. SPARQL Query Results XML Format. W3C, 2006.
D. Beckett and B. McBride. RDF/XML Syntaz Specification (Revised). W3C,
2004. URL http://www.w3.org/TR/rdf-syntax-grammar/.

S. Berger, F. Bry, and S. Schaffert. A Visual Language for Web Querying and
Reasoning. In Proc. Workshop on Principles and Practice of Semantic Web
Reasoning, LNCS 2901. Springer-Verlag, December 2003.

S. Berger, F. Bry, S. Schaffert, and C. Wieser. Xcerpt and visXcerpt: From
Pattern-Based to Visual Querying of XML and Semistructured Data. In Proc.
Int. Conf. on Very Large Databases, 2003.

S. Berger, F. Bry, O. Bolzer, T. Furche, S. Schaffert, and C. Wieser. Xcerpt and
visXcerpt: Twin Query Languages for the Semantic Web. In Proc. Int. Semantic
Web Conf., 11 2004. 14 I3.

T. Berners-Lee. Notation 3, an RDF language for the Semantic Web. Online
only, 2004.

T. Berners-Lee. N3QL—RDEF Data Query Language. Online only, 2004.

T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web—A new form of
Web content that is meaningful to computers will unleash a revolution of new
possibilities. Scientific American, 2001.

P. Biron and A. Malhotra. XML Schema Part 2: Datatypes. W3C, 2001. URL
http://www.w3.org/TR/xmlschema-2/.

C. Bizer. TriQL—A Query Language for Named Graphs. Online only, 2004.

O. Bolzer. Towards Data-Integration on the Semantic Web: Querying RDF
with Xcerpt. Diplomarbeit/Master thesis, University of Munich, 2 2005. URL
http://wuw.pms.ifi.lmu.de/publikationen#DA_Oliver.Bolzer.

V. Bonstrom, A. Hinze, and H. Schweppe. Storing rdf as a graph. In LA-WEB,
pages 27-36. IEEE Computer Society, 2003.

D. Brickley, R. Guha, and B. McBride. RDF Vocabulary Description Language
1.0: RDF Schema. W3C, 2004. URL http://wuw.w3.org/TR/rdf-schema/.

J. Broekstra and A. Kampman. SeRQL: A Second Generation RDF Query
Language. In Proc. SWAD-Europe Workshop on Semantic Web Storage and
Retrieval, 2003.

J. Broekstra, A. Kampman, and F. Harmelen. Sesame: A Generic Architec-
ture for Storing and Querying RDF and RDF Schema. In Proc. International
Semantic Web Conference, 2002.

RDF Querying: Language Constructs and Evaluation Methods Compared 49

24]

[25]

[26]

27]

28]

29]

30]

(31]

32]
(33]
[34]
(35]
(36]

37]

(38]
(39]
[40]

[41]

42]
(43]

[44]

F. Bry and S. Schaffert. The XML Query Language Xcerpt: Design Princi-
ples, Examples, and Semantics. In Proc. Int. Workshop on Web and Databases,
volume 2593 of LNCS. Springer-Verlag, 2002.

F. Bry, W. Drabent, and J. Maluszynski. On Subtyping of Tree-structured
Data A Polynomial Approach. In Proc. Workshop on Principles and Practice of
Semantic Web Reasoning, St. Malo, France, volume 3208 of LNCS. REWERSE,
Springer-Verlag, 9 2004. 14 I3.

F. Bry, T. Furche, L. Badea, C. Koch, S. Schaffert, and S. Berger. Identifica-
tion of Design Principles for a (Semantic) Web Query Language. Deliverable
14-D1, REWERSE, 2004. URL http://rewerse.net/publications/index.
htm1#REWERSE-DEL-2004-I4-D2.

F. Bry, T. Furche, L. Badea, C. Koch, S. Schaffert, and S. Berger. Querying
the Web Reconsidered: Design Principles for Versatile Web Query Languages.
Journal of Semantic Web and Information Systems, 1(2), 2005. I4.

F. Bry, A. Schroeder, T. Furche, and B. Linse. Efficient Evaluation of n-ary
Queries over Trees and Graphs. Submitted for publication, 2006.

R. G. G. Cattell, D. K. Barry, M. Berler, J. Eastman, D. Jordan, C. Russell,
O. Schadow, T. Stanienda, and F. Velez, editors. Object Data Standard: ODMG
8.0. Morgan Kaufmann, 2000.

D. Chamberlin, J. Robie, and D. Florescu. Quilt: An XML Query Language for
Heterogeneous Data Sources. In Proc. Workshop on Web and Databases, 2000.
V. Christophides, D. Plexousakis, G. Karvounarakis, and S. Alexaki. Declarative
Languages for Querying Portal Catalogs. In Proc. DELOS Workshop: Informa-
tion Seeking, Searching and Querying in Digital Libraries, 2000.

V. Christophides, D. Plexousakis, M. Scholl, and S. Tourtounis. On Labeling
Schemes for the Semantic Web. In WWW, pages 544-555, 2003.

J. Clark and S. DeRose. XML Path Language (XPath) Version 1.0. W3C, 1999.
K. Clark. RDF Data Access Use Cases and Requirements. W3C, 2004.

K. G. Clark. RDF Data Access Use Cases and Requirements. Working draft,
W3C, 10 2004.

E. Cohen, E. Halperin, H. Kaplan, and U. Zwick. Reachability and distance
queries via 2-hop labels. STAM J. Comput., 32(5):1338-1355, 2003.

I. F. Cruz, V. Kashyap, S. Decker, and R. Eckstein, editors. Proceedings of
SWDB’03, The first International Workshop on Semantic Web and Databases,
Co-located with VLDB 2003, Humboldt- Universitdt, Berlin, Germany, September
7-8, 2003, 2003.

I. Davis. RDF Template Language 1.0. Online only, September 2003.

J. de Bruijn, E. Franconi, and S. Tessaris. Logical Reconstruction of RDF and
Ontology Languages. In Workshop on Principles and Practice of Semantic Web
Reasoning, volume 3703 of LNCS. Springer-Verlag, 2005.

S. Decker, D. Brickley, J. Saarela, and J. Angele. A Query and Inference Service
for RDF. In Proc. W3C QL’98 — Query Languages 1998, December 1998.

A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. XML-QL: A
Query Language for XML. In Proc. W8C QL’98 — Query Languages 1998. W3C,
1998.

C. L. Forgy. On the efficient implementation of production systems. PhD thesis,
1979.

J. Frohn, G. Lausen, and H. Uphoff. Access to Objects by Path Expressions and
Rules. In Proc. International Conference on Very Large Databases, 1994.

L. M. Garshol. Living with Topic Maps and RDF. Online only, 2003.

50

[45]

[46]
(47]

(48]
(49]
[50]

[51]
[52]

(53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]
(61]
[62]
(63]
(64]

[65]

[66]

T. Furche et al.

G. Gottlob, C. Koch, and R. Pichler. Efficient Algorithms for Processing XPath
Queries. ACM Transactions on Database Systems, 30(2):444-491, 2005.

J. Grant and D. Backett. RDF Test Cases. W3C, February 2004.

H. L. S. W. R. Group. Jena — A Semantic Web Framework for Java. Online
only, 2004.

T. Grust, M. V. Keulen, and J. Teubner. Accelerating XPath Evaluation in any
RDBMS. ACM Transactions on Database Systems, 29(1):91-131, 2004.

S. Harris. SPARQL query processing with conventional relational database
systems, 2005.

S. Harris and N. Gibbins. 3store: Efficient Bulk RDF Storage. In Proc. Interna-
tional Workshop on Practical and Scalable Semantic Systems, 2003.

A. Harth. Triple Tutorial. Online only, 2004.

A. Harth and S. Decker. Optimized Index Structures for Querying RDF from
the Web, 2005.

P. Hayes and B. McBride. RDF Semantics. W3C, 2004. URL http://wuw.
w3.org/TR/rdf-mt/.

G. Karvounarakis, V. Christophides, D. Plexousakis, and S. Alexaki. Querying
RDF Descriptions for Community Web Portals. In Proc. Journees Bases de
Donnees Avancees, 2001.

G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and M. Scholl.
RQL: A Declarative Query Language for RDF. In Proc. International World
Wide Web Conference, May 2002.

G. Karvounarakis, A. Magkanaraki, S. Alexaki, V. Christophides, D. Plex-
ousakis, M. Scholl, and K. Tolle. Querying the Semantic Web with RQL. Com-
puter Networks and ISDN Systems Journal, 42(5):617-640, August 2003.

G. Karvounarakis, A. Magkanaraki, S. Alexaki, V. Christophides, D. Plex-
ousakis, M. Scholl, and K. Tolle. RQL: A Functional Query Language for RDF.
In P. Gray, P. King, and A. Poulovassilis, editors, The Functional Approach to
Data Management, chapter 18, pages 435-465. Springer-Verlag, 2004.

M. Kifer, G. Lausen, and J. Wu. Logical Foundations of Object Oriented and
Frame Based Languages. Journal of ACM, 42:741-843, 1995.

G. Klyne, J. Carroll, and B. McBride. Resource Description Framework
(RDF): Concepts and Abstract Syntax. W3C, 2004. URL http://www.w3.
org/TR/rdf-conc epts/.

M. Lacher and S. Decker. On the Integration of Topic Maps and RDF Data. In
Proc. Ezxtreme Markup Languages, 2001.

M. Lacher and S. Decker. RDF, Topic Maps, and the Semantic Web. Markup
Languages: Theory and Practice, 3(3):313-331, December 2001.

Langdale Consultants. Nexus Query Language. Online only, 2000.

O. Lassila and R. Swick. Resource Description Framework (RDF) Model
and Syntax Specification. W3C, 1999. URL http://www.w3.org/TR/1999/
REC -rdf-syntax-19990222/.

B. Ludéascher, R. Himmeroeder, G. Lausen, W. May, and C. Schlepphorst. Man-
aging Semistructured Data with FLORID: A Deductive Object-oriented Per-
spective. Information Systems, 23(8):1-25, 1998.

M. Magiridou, S. Sahtouris, V. Christophides, and M. Koubarakis. Rul: A declar-
ative update language for rdf. In Proceedings Int’l. Semantic Web Conf. (ISWC),
2005.

A. Magkanaraki, V. Tannen, V. Christophides, and D. Plexousakis. Viewing
the Semantic Web Through RVL Lenses. In Proc. International Semantic Web
Conference, October 2003.

RDF Querying: Language Constructs and Evaluation Methods Compared 51

(67]
(68]
(69]
[70]
(71]
(72]
(73]
(74]
[75]
[76]
[77]
(78]
[79]

(80]
(81]

(82]
[83]
(84]
(85]
(86]

(87]

(88]

(89]

[90]

D. Maier. Database Desiderata for an XML Query Language. In Proc. W3C
QL’98 — Query Languages 1998, December 1998.

U. Manber and G. Myers. Suffix Arrays: A New Method for On-Line String
Searches. In SODA, pages 319-327, 1990.

F. Manola, E. Miller, and B. McBride. RDF Primer. W3C, 2004. URL
http://www.w3.org/TR/rdf-primer/.

M. Marx. Conditional XPath, the First Order Complete XPath Dialect. In Proc.
ACM Symposium on Principles of Database Systems, pages 13-22. ACM, 6 2004.
M. Marx. XPath with Conditional Axis Relations. In Proc. Extending Database
Technology, 2004.

A. Matono, T. Amagasa, M. Yoshikawa, and S. Uemura. An indexing scheme
for rdf and rdf schema based on suffix arrays. In [37], pages 151-168.

A. Matono, T. Amagasa, M. Yoshikawa, and S. Uemura. A Path-based Relational
RDF Database. 2005.

K. Matsuyama, M. Kraus, K. Kitagawa, and N. Saito. A Path-Based RDF Query
Language for CC/PP and UAProf. In Proc. IEEE Conference on Pervasive
Computing and Communications Workshops, 2004.

W. May. XPath-Logic and XPathLog: A Logic-Programming Style XML Data
Manipulation Language. Theory and Practice of Logic Programming, 3(4):499—
526, 2004.

L. Miller, A. Seaborne, and A. Reggiori. Three Implementations of SquishQL, a
Simple RDF Query Language. In Proc. International Semantic Web Conference,
June 2002.

U. Ogbuji. Versa by example. Online only, 2004.

U. Ogbuji. Thinking XML: Basic XML and RDF techniques for knowledge
management: Part 6: RDF Query using Versa. Online only, April 2002.

M. Olson and U. Ogbuji. Versa Specification. Online only, 2003.

S. Palmer. Pondering RDF Path. Online only, 2003.

B. Parsia. Querying the web with sparql. In P. Barahona, F. Bry, E. Franconi,
U. Sattler, and N. Henze, editors, Reasoning Web, Second Int’l. Summer School
2006, Tutorial Lectures. Springer-Verlag, 2006.

E. Prud’hommeaux. Algae Extension for Rules. Online only, 2004.

E. Prud’hommeaux. Algae RDF Query Language. Online only, 2004.

E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF. Work-
ing draft, W3C, 4 2006.

D. Reynolds. RDF-QBE: a Semantic Web Building Block. Technical Report
HPL-2002-327, HP Labs, 2002.

J. Robie. The Syntactic Web: Syntax and Semantics on the Web. In Proc. XML
Conference and Ezxposition, December 2001.

J. Robie, L. M. Garshol, S. Newcomb, M. Fuchs, L. Miller, D. Brickley,
V. Christophides, and G. Karvounarakis. The Syntactic Web: Syntax and Se-
mantics on the Web. Markup Languages: Theory and Practice, 3(4):411-440,
2001.

S. Schaffert. Xcerpt: A Rule-Based Query and Transformation Language for
the Web. Dissertation/Ph.D. thesis, University of Munich, 2004. URL http://
www.pms.ifi.lmu.de/publikationen/#PMS-DISS-2004-1.

S. Schaffert and F. Bry. Querying the Web Reconsidered: A Practical Introduc-
tion to Xcerpt. In Proc. Extreme Markup Languages, August 2004.
A.Schroeder. An Algebra and Optimization Techniques for Simulation Unification.
Diplomarbeit/Master thesis, Institute for Informatics, University of Munich, 2005.
URL http://www.pms.ifi.lmu.de/publikationen#DA_Andreas.Schroeder.

52

(91]
(92]

93]

04]

[99]

[100]

T. Furche et al.

A. Seaborne. RDQL — A Query Language for RDF. Online only, January 2004.
M. Sintek and S. Decker. TRIPLE—An RDF Query, Inference, and Transfor-
mation Language. In Proc. Deductive Database and Knowledge Management,
October 2001.

M. Sintek and S. Decker. TRIPLE—A Query, Inference, and Transformation
Language for the Semantic Web. In Proc. International Semantic Web Confer-
ence, June 2002.

A. Souzis. RxPath Specification Proposal. Online only, 2004.

D. Steer. TreeHugger 1.0 Introduction. Online only, 2003.

P. Stickler. CBD—Concise Bounded Description. Online only, 2004.

N. Walsh. RDF Twig: accessing RDF graphs in XSLT. In Proc. Extreme Markup
Languages, 2003.

A. Wilk and W. Drabent. On Types for XML Query Language Xcerpt. In Proc.
Workshop on Principles and Practice of Semantic Web Reasoning, LNCS 2901.
Springer-Verlag, 2003.

K. Wilkinson, C. Sayers, H. Kuno, and D. Reynolds. Efficient RDF Storage and
Retrieval in Jena, 2003.

C. Zaniolo. The Database Language GEM. In Proc. ACM SIGMOD Conf., 1983.

Querying the Web with SPARQL

Bijan Parsia

University of Manchester

1 SPARQL Background

Consider the following two conceptions of the Semantic Web:

— A web of (logic based) knowledge representations.
— A web of (semi-)structured data.

In both conceptions, the common factor (the web) imposes certain require-
ments: extremely variable scalability (from a home page to community sites to
sites that encompass a significant fraction of the web), rapid evolution, radical
distribution, arbitrary interconnection and aggregation, and very little valida-
tion or other means of control. The demands of the web are forcing both the
knowledge representation (KR) and the database communities to stretch their
understanding and technology in different ways. While implementation tech-
niques require revamping to deal with web scale, finding the right level and
sort of expressiveness is even more critical. The web doesn’t just need bigger
databases, it needs “better” ones. The rise of semi-structured data, especially in
the form of XML and associated languages, is driven by the success of HTML
as a data representation language as well as its many failures. The amount of
data that has been created or converted to HTML is staggering. HTML allows
novices to publish all sorts of information quite easily while also supporting com-
plex information structures (for example, see the typical site map of a large site).
However, HT'ML is lacking in a number of ways, especially in the management,
evolution, integration, and repurposing of data. HTML, especially in common
use, has (at least) three fundamental problems: malformed or misused constructs,
a heavy presentation orientation, and a lack of needed expressivity. These prob-
lems stem from aspects of HTML (and associated software like the browser)
that, we believe, contributed to its success. Browsers were very permissive in
their parsing and rendering of HI'ML, which lowered the barrier to producing
pages. Various presentation features in HTML made it an attractive platform
for publishing information from software manuals to dictionaries to newspapers
with ads. HTML’s core simplicity requires a lack of expressivity, which makes
it easier to learn (and to learn to “abuse”). More significantly, by pushing the
balance of expressivity (and thus complexity) toward the presentation aspects of
the language, it was relatively neutral toward content of different sorts. Consider
the effect of requiring a specialized content language to be developed before one
could publish, say, a recipe. Either the user would have to develop their own

P. Barahona et al. (Eds.): Reasoning Web 2006, LNCS 4126, pp. 53-67, 2006.
(© Springer-Verlag Berlin Heidelberg 2006

54 B. Parsia

language (a difficult task in itself), or find a suitable one if it exists. Both paths
are strongly inhibitory.

While these “problems” arguably helped the web to grow, they make manag-
ing, reusing, or evolving data difficult, as can be seen by the move away from
websites based on collections of HTML files toward database backed websites,
and, more generally, to “content management systems”. More recently, under
the “Web 2.0” moniker (for public, community-oriented sites) and with the rise
of Web Services (primarily for business interaction), there has been an increase
in the reuse of web published information across organizational boundaries in
complex ways. This increase has been enabled by the use of XML to overcome
exactly the three problems listed above: XML insists on well formedness and
strongly discourages permissive parsers — if there is a mismatched tag, most
parsers reject the document hard and fast. XML has no inherent presentation
semantics, and, pragmatically, presentation has been handled either by trans-
formation to HTML or by Cascading Style Sheets (CSS). Finally, XML is a
metalanguage for defining markup languages, so, at the very least, users can de-
velop languages specific to their representational task. On the other hand, XML
based languages retain some of the flexibility of HTML: well-formedness is a very
minimal constraint on XML documents, so in the worst case, one can jumble
arbitrary tags together and process the data ad hocly. Schemas are all out of
band and generally allow for a great deal of flexibility in the structure. Finally,
the query and transformation languages (XPath, XQuery, and XSLT) reflect and
exploit the base flexibility of XML: they do not require complete structuring of
the data, they can impose constraints in an as needed and as possible basis, and
they incorporate a strong navigational model[2].

While XML has been criticized by the semi-structured data community for
its tree, rather than graph, orientation[5] among other things, its wide adoption
and strong infrastructure make it a difficult behemoth to ignore, and make it
silly to do so. However, XML technologies are firmly rooted in a datastructure
view of the world, and thus not particularly suitable for logic based knowledge
representation[1]. For example, XQuery, while admirably declarative, is a fairly
standard functional programming language (with some twists in the type sys-
tem, XML Schema, to deal with tree structured data), and typical XML tasks
such as validation, transformation, and (database like) query focus on the struc-
tural, or syntactic, aspects of an XML fragment. Thus, in order to represent
some aspect of the world, one must design all aspects of the representation,
generally leaving many aspects implicit.! Of course, one could use XML as the

! “In a nut-shell (and somewhat exaggerated), the difference between knowledge-based
programming (which processes knowledge) and classical programming (which pro-
cesses data) can be formulated as follows. In classical programming, one designs spe-
cialized programs that are tailored to a specific application problem. The knowledge
about the problem description and the application domain is implicitly represented
in the structure of the program, and must thus be acquired by the programmer. In
knowledge-based programming, the knowledge about the application domain is rep-
resented explicitly ... ideally, the preocessing can be done with the help of general
... problem solving methods.”[1].

Querying the Web with SPARQL 55

syntax of a knowledge representation language and, in a sense, that is what
RDF, RDFS, and OWL do. However, RDF is an inexpressive enough logic that
it is ambiguous as to whether it is a knowledge representation language or a data
language (see section 3.2 for more discussion). When you add that people often
use (or misuse) RDF as competitor to XML, then the picture gets even more
murky.

In any information based application, whether a database driven web applica-
tion or an Al planning system interacting with a theorem prover, there needs to
be an effective interface between the information and information management
part of the system, and the rest. In database management literature, this inter-
face is often in the form of a specialized language called a data manipulation
language, which includes facilities for retrieving, structuring, adding, modifying,
and deleting information in the database. Of these, perhaps the most prominent
is the retrieval aspect, that is, the query language. For XML, the most com-
mon query language is XPath which uses a navigational retrieval model. For the
Semantic Web languages RDF(S) and OWL, there are a plethora of languages
available, but the W3C is in the process of standardizing one, called SPARQL
(an acronym expanding to SPARQL Protocol and RDF Query Language). While
SPARQL technically includes both a query language and a protocol for (typically
remote) access of Semantic Web data, development of the protocol greatly lags
behind that of the query language. Thus, we shall focus on the query language,
and hereafter use “SPARQL” to refer to the query language.

Historically, RDF query languages were primarily of two sorts: navigational,
“path”-like languages and relational, SQL-like languages. Of the former, there
are two prominent members: Versa? and the Wilbur Query Language?®, though
they remain little used, with only one implementation each. SQL-like languages
are widespread, with RDQL* being the most popular. RDQL is the starting
point of SPARQL, though during development SPARQL acquired a new syntax
for graph patterns based on Turtle® and features from other SQL-like RDF query
languages, most notably, SeRQLS, were added.

2 RDF

Here we present an abbreviated overview of the RDF abstract syntax, conceptual
model, and semantics. The reader will find it helpful to review the relevant
specifications: RDF: Concepts and Abstract Syntaz”, and RDF Semantics®, in
particular sections 0, 1, and 2. The concrete syntax used in this paper is Turtle,
which is also the core graph syntax is SPARQL.

2 http://uche.ogbuji.net/tech /rdf/versa,/

3 http://wilbur-rdf.sourceforge.net/2004/05/11-comparison.shtml
* http://www.w3.org/Submission/RDQL/

5 http://www.dajobe.org/2004/01/turtle/

5 http://www.openrdf.org/doc/sesame/users/ch06.html

" http://www.w3.org/TR/rdf-concepts/

8 http://www.w3.org/TR/rdf-mt/

56 B. Parsia

2.1 Syntax

RDF documents describe graphs, which are collections of triples. Triples are
understood as assertions, that is, as true or false indicative sentences. Each triple,
as the name indicates, consists of three parts, a subject, predicate, and object.
Each “slot” of a triple can be filled with an RDF term, though there are syntactic
restrictions on where certain terms can appear. The canonical RDF term is
the Uniform Resource Identifier, or URI (recently supplanted with International
Resource Indentifiers, IRIs, which are constructed from a much wider character
set). URIs can be the subject, predicate, or object of a triple and correspond
either to a singular term (that is, as the name of an individual) when the subject
or object, or to a two place relation when the predicate. In plain RDF, there is
not a significant distinction between a predicate and other URI terms, so it is
convenient to think of a triple as reified into a three place predicate (call it ‘rdf’,
or ‘triple’).

Objects can also be data values (in RDF jargon these are called “literals”).
There are two basic sorts of literal, plain literals and typed literals. Literals
fundamentally consist of two parts, a lexical form and a value. The lexical form
is always a Unicode string and it is expressed the syntax of the literal. For plain
literals, the lexical form and the value are identical (perhaps modulo encoding
or whitespace), and plain literals may have a language tag as well. Typed literals
all have a third part, a datatype URI® which determines the range of admissible
values and the mapping from the lexical form into the value space. For example,
consider the following typed literals:

Example 1. Value Identical Typed Literals
"1"""<http://www.w3.org/2001/XMLSchema#integer>
"01"""<http://www.w3.org/2001/XMLSchema#integer>

These literals have identical datatype URIs and values, but their lexical forms
are distinct. Certain SPARQL test functions will treat these literals as identical.
There is one predefined datatype in RDF '© for XML content.

So far, the possible RDF graphs we have described are all ground, that is,
they contain no variables of any sort. Ground graphs are similar to XML Infosets
without type information (that is, the abstract datastructures corresponding to
well formed XML documents) — they are very similar to a standard database.
Standard database techniques (i.e., model checking) suffice to deal with them.
However, RDF throws a twist into the mix: so-called blank nodes (commonly
known as BNodes). BNodes may appear only in subject and object positions,
and correspond to existentially quantified variables. The BNode quantifier for a
particular graph occurs outside the entire graph, thus all such variables have a
single, graph-global, scope.

9 Tt is somewhat characteristc of RDF that certain syntactic concerns are mixed with
semantic ones. In this case, instead of the notion of a type being fundamental, it is
the type’s identifier that is primary. Part of this is due to the desire to compose
specifications (and the things they specified) via standard Web mechanisms.

19 Named by the URI: http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral

Querying the Web with SPARQL 57

To sum up, an RDF graph is a collection (conjunction) of triples. Each triple
consists of three terms, a URI or BNode, a URI, and a URI, BNode, or literal
term. Literals may be typed or untyped. In SPARQL lingo, an RDF graph that
is available for query is part of a dataset. A dataset may contain one or more
RDF graphs where all but one of the graphs in a dataset have a URI as a label.
The unlabeled graph is called the default graph. In this paper, we shall only deal
with a single default graph in the queried dataset.

Throughout, we use the Turtle concrete syntax for RDF, as it is the syntax
employed by SPARQL. Here is a brief introduction to Turtle, but the reader is
strongly encouraged to consult the Turtle specification.

The core of Turtle is a direct, minimal representation of a set of triples. Each
triple is delimited with a full stop; URIs are delimited by angle brackets; BNodes
are indicated by a leading “_:”; and literals (both plain and typed) by straight
double quotes. The following four triples exhibit all these forms, including a
BNode coreference:

Ezample 2. Basic Turtle:
<http://ex.org/sara> <http://ex.org/loves>
<http://ex.org/mary>.
<http://ex.org/sara> <http://ex.org/hasFirstName> "Sara".
<http://ex.org/sara> <http://ex.org/knows> _:aBNode.
_:aBNode <http://ex.org/age>
"8"""<http://www.w3.org/2001/XMLSchema#integer>.

Turtle has a number of abbreviation forms which make it considerably less te-
dious to read and write. In particular, URIs can be abbreviated with (psuedo)
QNames, given an appropriate prefix declaration, as follows:

Ezample 3. Moderately Abbreviated Turtle:
@prefix : <http://ex.org/>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
:sara :loves :mary.
:sara :hasFirstName "Sara".
:sara :knows _:aBNode.
_:aBNode :age "8"""xsd:integer.

Notice that one can declare a “default” prefix, as we did in this example. Turtle
has additional abbreviation forms, but we shall not use them in this paper.

2.2 Semantics

RDF’s semantics are given by a simple, if somewhat non-standard, model theory.
In what follows, we follow closely the presentation in the RDF Semantics docu-
ment, and we restrict ourselves to the most basic semantics, that of the graphs
themselves, without attending to any of the extended semantic conditions im-
posed on the special RDF and RDFS vocabulary.

58 B. Parsia

Definition 1. A simple interpretation, I, of an RDF graph, R
(where Sig(R) is the set of terms used in R, i.e., the signature) is a tuple of
the form < IR, IP, IEXT IS, IL,IT > where

— IR (the domain) is a non-empty set;
— IP is the set of properties;
IEXT :IP — IR X IR;
for the set of URIs, U such that U C Sig(R), IS :U — (IRUIP);
— for the set of plain literals, PL C Sig(R), IL: PL — IR;
— for the set of typed literals, TL C Sig(R), IT : TL — IR;
— for the set of BNodes, B such that B C Sig(R), A: B — IR and for any
non-BNode T € Sig(R), A: T — I(T).
— For a triple, < s,p,0 >,1(< s,p,0 >) = true if
o I(p) € IP;
o < Al(s),A'(0) > IEXT(I(p)) for some A’;
otherwise I(< s,p,0 >) = false;
— For an RDF graph, R, I(R) = true if, given some A’, every triple Tr € R,
I(Tr) = true, and I(R) = false otherwise.

The main thing to attend to is that properties are not interpreted directly as sets
of pairs of elements of the domain, as one might expect, but via an additional
mapping fucntion (IEXT). This is a hook for higher order syntax in RDFS and
OWL Full (though the semantics remains robustly first order, in the style of
HiLog[3]).

Entailment between basic RDF graphs (called simple entailment) is defined
in the usual way: a graph R1 simply entails a graph R2 if for all I such that
I(R1) = true, I(R2) = true as well.

3 Core SPARQL: Basic Graph Patterns

3.1 Syntax

Basic graph patterns (BGPs) are the key interface between the query side of
things and the data side. A BGP is the only part of a SPARQL query that is
sensitive to the semantics of the queried document, and, in fact, at least concep-
tually speaking, the only part that “interacts” with the data. It should, therefore,
be no surprise that a BGP is a slight, but significant, generalization of an RDF
graph. The extra bit is in the form of a new sort of term, the query variable.
Query variables are similar to BNodes in being, in a sense, existential variables
and are globally scoped to the BGP in which they occur. Query variables have
a bit more freedom syntactically as they can appear in the predicate, as well as
subject or object, of a triple. The set of triples that include triples with query
variables are called triple patterns. A BGP is a set of triple patterns.

In addition to syntactic freedom, query variables are called out specially from
BNodes for two reasons:

Querying the Web with SPARQL 59

— Since BNodes in BGPs are lexically identical to BNodes in a graph serial-
ized to Turtle syntax, it’s useful to distinguish between “intentional” query
variables and variables that are possibly just part of some example data.

— Query variables and BNodes correspond to distinguished and undistinguished
variables, respectively. Traditionally, a distinguished variable must be bound
to a ground term, and thus can only bind to individuals explicitly mentioned
in the document. Undistinguished variables do not require a named binding
and do not report their bindings in result sets. They are purely existential
i.e., they do not require a witness entity present in the graph.

As we shall discuss in the next section, things are not quite so neat in the case
of simple entailment since many SPARQL users wanted the ability to query for
BNodes, primarily to deal with coreference between results (or queries!). Thus,
query variables can be bound to BNodes — a rather unusual situation.

The concrete syntax of BGPs is Turtle plus terms with either a leading “?” or
leading “$” to indicate a query variable (we shall use “?” exclusively).!! BGPs
are delimited by curly braces.

Ezample 4. A BGP (without prefix declarations):
{ex:sara ex:loves ?who.}

3.2 SPARQL Semantics

The semantics for SPARQL, even restricting attention to simple entailment, is
surprisingly complex. BNodes, both in the data and especially in the result set,
complicate the picture enormously. Furthermore, in spite of the clear semantics
of RDF (which mandates that BNodes are existential variables), many users
(and SPARQL implementors and specifiers!) tend to treat BNodes as “graph
local” names, e.g., as Skolem constants. For editing applications, this is not an
unreasonable attitude, but for the definition of query answers, it is rather odd.
Given the lack of systems that correctly and sensibly implement simple entail-
ment (and given the rather high computational complexity of simple entailment),
we should not be so surprised that the data structural view of RDF graphs is
so prevalent. It is possible that future working groups will chose to retract the
existential interpretation of BNodes, given these prevailing attitudes.

A second difficulty is the desire to have SPARQL be the query language for
the Semantic Web, or at least for all extant Semantic Web languages. Even re-
stricting one’s attention to the RDF Semantics document, one finds several sorts
of entailment specified (simple entailment, RDF entailment, various extensions
including RDFS). OWL is a completely different beast. While all these languages
have an RDF syntax, not all variants are happy with the RDF semantics. For
example, OWL Lite and OWL DL are based on description logics and thus are
biased toward a more traditional first order model theory (i.e., where relations
are directly identified with sets of tuples). So, some of the syntactic freedom

11 There are other relaxations, including permitting literals in the subject position.

60 B. Parsia

of RDF and SPARQL can cause problems for standard approaches to OWL
conjunctive query.

The current SPARQL specification tries to be flexible and to provide useful
hooks for dealing, semantically, with all these variations. Unfortunately, the cur-
rent does not provide any syntax (or protocol features) for determining what
semantics one is querying with. Also, there are several unspecified aspects of the
semantics (for example, the algebra — see the notion of distinctness). It is hoped
that as implementation and use experience is gathered, these problems can be
straightfowardly resolved.

Parameterizing the Semantics. For specification purposes, we can divide
SPARQL queries into two parts: basic graph patterns and algebraic operations.'?
BGPs are evaluated against a graph and that evaluation produces a query result
(also known as a result set), that is, a set of bindings for the query variables
in the BGP. A query result is very much like a table in a relational database
system (the key difference being the presence of BNodes in the results). Query
results are then manipulated by the various algebraic operations of SPARQL.
This conception of SPARQL allows for SPARQL queries to be parameterized to
the semantics of the graph, while leaving the rest of the language fixed. (From
an implementation perspective, such a separation is unlikely to be practical.)

The relationship between a graph, a BGP, and the result set is characterized by
an “Entailment regime”. An entailment regime is an arbitrary relation between
RDF graphs, thus, clearly, RDF entailment and all the various forms of OWL
entailment are entailment regimes. This vagueness in specification allows for all
sorts of processing of RDF graphs to affect the valid answers to a SPARQL
query, including procedural and other ad hoc notions.

As we will see below, a result is a substitution of RDF terms for the query
variables of a BGP such that the resulting graph is entailed by the queried graph
under some entailment regime. Now we need to take into account what may be
substituted to form a correct result.

BNode Coreference. It is tempting to take query variables as simple existen-
tial variables, and thus BGPs as a mere syntactic variant of RDF graphs. On
this view, if a graph simply entails a BGP, then the result set is, in principle, non
empty — there is at least one hit on the graph. By testing different groundings
of the BGP (i.e., wherein we replace all the query variables with ground terms)
we could (impractically) determine the particular bindings that make up the
results set.

There are several wrinkles in this picture. The easiest to resolve is the exis-
tence of query variables in predicate positions. Essentially, we must ground those
variables with properties in the signature of the graph in question before testing
for entailment, which is how we (in principle) extract predicate variable bindings
anyway.

12 This approach was forcefully articulated by Enrico Franconi and Sergio Tessaris
during the development of SPARQL.

Querying the Web with SPARQL 61

Trickier is the fact that BNodes can be returned in query results as values of
bindings. There are a number of reasons for this, but the most prominent one is
for exhibiting coreference in results sets. For example, take the following graph
and BGP (assume an appropriate prefix):

Ezxample 5. Significant BNode Coreference
Graph:

_:X :loves :mary.

_:X :loves :sheeva.

_:y :loves :katayun.

BGP:

?who :loves 7whom.

Now, if ?who were properly distinguished, then this query would have an empty
results set, which is both counterintuitive and unfortunate. If it were properly
non-distinguished, then while we would know that all of :mary, :sheeva, and
:katayun are loved, we could not tell from the result set that someone loves both
:mary and:sheeva (without a subsequent query). The most desirable result set
for this query against this graph is:

Table 1. Result set for example 5

?who| ?whom
_:a ‘mary
_:a | :sheeva
_:b |:katayun

(Note, of course, that the semantics of RDF do not rule out that there is
someone who loves all three.)

This result set is very informative. We know that someone loves each of these
women, and we know that at least one person loves both :mary and :sheeva.
We definitely want this sort of coreference in result sets. We could achieve the
same effect, in some sense, with additional queries. Once we have retrieved all
the loved people, we could subsequently test whether each element of the power
set of the set of loved people share a lover. It is an understatement to say that
this is not at all practical. Interestingly, such coreference between answers in a
result set is useful under a wide range of entailment regimes, including those of
OWL, though existentials returned in bindings has not, to our knowledge, been
considered before.!?

13 Obviously, one might also want to have coreference between result sets of different
queries (and thus between result sets and queries). To achieve such “stable BNode”
references requires the identification of a larger scope to put the quantifiers outside,
perhaps a notion of a “session”. One would expect this to be handled on the protocol
side of things.

62 B. Parsia

Result Redundancy. A naive application of simple entailment will result in
an arbitrary number of results, if there are any. Simple entailment allows for
existential generalization. So if there are any hits at all, we can substitute fresh
BNodes in for query variables to get a new, but redundant, result. This is highly
undesirable, as it arbitrarily bloats the result set. Of course, the graph itself may
already contain such redundancy, such as in:

Ezxample 6. Redundant graph:
:june :loves :sheeva.
_:x :loves :sheeva.

The second triple does not add any information, since if we know that if : june

:loves :sheeva, we know that someone does. Similarly, consider the following
result set):

Table 2. Result set with redundancy

7x Ty

: june|:sheeva
_:x |:sheeva

Semantically speaking, the second result does not give us any new information.
This result set could be derived from a query on example 6, or from a series of op-
erations (e.g., a projection of another result set). Now, fully minimizing the result
set might be computationally prohibitive (in particular, just requiring minimality
in the result set of a BGP bumps up the complexity of query answering). Many
query systems allow for redundancy in the result sets (though SPARQL, like SQL,
has a keyword DISTINCT that enforces (some sense of) minimality in the results),
but we must ensure that there is a sensible bound on redundant answers. Further-
more, there are some applications (e.g., editing) where sensitivity to the explicit
redundancy in the queried graph could be pragmatically interesting, though this
is pushing back toward a datastructural view of RDF.

Whichever scenario, we must be careful to give only the right amount of
redundancy, and that the redundancy be predictable.

The Semantics '*
To handle all this, plus semantic extensibility, requires a fair bit of machinery.
Recall the desiderata:

1. Parameterizable semantics
2. BNodes in results
3. Appropriately minimal redundancy

4 Many thanks to Sergio Tessaris and especially Enrico Franconi for their helpful
discussions about SPARQL semantics. Without that assistence, this section would
surely be entirely broken.

Querying the Web with SPARQL 63

Different entailment regimes put different constraints on the values of bind-
ings, so “more” expressive entailment relations may miss answers that “less”
expressive entailment relations give (as well as the more obvious vice versa;
in a sense, some less expressive entailment relations allow for more expressive
result sets). For example, in most query focused variants of OWL DL entail-
ment, BNodes cannot appear as bindings of variables (they can only match
non-distinguished variables). Similarly, OWL DL entailment generally does not
allow for the built-in vocabulary to appear as bindings. In order to capture these
distinctions, the scoping set contains the set of admissible bindings for a query
against a graph under an entailment regime.

Definition 2. Basic Graph Pattern E-matching'®

Let G be an RDF graph, BGP be a basic graph pattern, B a set of RDF
terms, S a mapping from the query variables in BGP to elements of B, and E
an entailment regime. BGP E-matches with pattern solution S on graph G with
respect to scoping set B if:

— BGP' is a basic graph pattern that is exactly the same as BGP except that
all the BNodes in Sig(BGP) are mapped 1-1 to the BNodes in Sig(BGP’)

— B and BGP' do not share any BNodes.

— G FE-entails (GU S(BGP'))

While the entailment regime is necessary for parameterizing the semantics, it
is not sufficient. We also need B, the “scoping set”, to specify the terms which
are legitimate values of bindings. For example, if one wished to use SPARQL to
express traditional conjunctive queries against OWL DL knowledge bases (where
there are no existentials in the result set), one merely needs to specify that the
scoping set can never contain BNodes. Similarly, one can exclude the built-in
vocabulary, or the set of class names. However, typically, B must contain all or
nearly all the non-BNode terms in G. If it excludes terms that are legitimate
bindings, we run the risk of excluding valid answers. It also must contain enough
BNodes to handle all the distinctions needed in the result set. Furthermore,
the entailment regime must specify what instantiated BGPs are “syntactically
legal.” 16

The main oddity in this definition is the third condition: instead of directly en-
tailing S(BGP), G must entail (GU S(BGP')). Let us consider the case where
the entailment regime is simple entailment, and the scoping set, B, is equal

15 This definition is somewhat different from that appearing in the SPARQL specifica-
tion. in particular, it dispenses with the notion of a scoping graph and just reuses
the original graph. We believe that these definitions are effectively equivalent, but
since the role of the scoping graph is not explicitly described, it is hard to be entirely
sure.

In our definition, this is defined by ruling that non-well-formed BGPs for an en-
tailment regime are not entailed by any graph. In the SPARQL document, this is
specified by an extra condition on entailment, that is, that S(BGP’) must be “in
the range” of the entailment relation.

16

64 B. Parsia

to Sig(G). (This is, in fact, the specific semantics currently sanctioned by the
SPARQL specification.) We now must consider if the definition of E-matching,
instantiated in this way, meets desiderata 2 and 3.

B contains exactly the BNodes in G. When we substitute one into BGP’,
since this subsitution preserves BNode identity, we have stable coreference across
different substitutions. Thus we at least enable coreference. Since we combine by
simple set union the original graph with S(BGP’), BNode identity is preserved
between triples in G and in S(BGP’). Thus, if there is a match, G U S(BGP’)
will just be G again. If we substitute the “wrong” BNode in for a query variable,
we will not get an “extra” match (unlike if we use a fresh BNode), since there
will be an extra coreference that prevents G from entailing GUS(BGP’). So, we
get exactly the redundancy that is in G and no more.!” Consider the following
example:

Ezxample 7. Correct redundancy:
Graph:

_:x :loves :sheeva.

_:y :loves :sheeva.

_:z :loves :zarrin.

BGP:
?who :loves :sheeva

Recall that the scoping set is equal to the signature of the original graph,
thus, {_:x,_:y,_:2, :loves, :sheeva, :zarrin}. These are the only candidates
for bindings of ?who. Clearly, the only possibly successful candidates are the
BNodes, so let us examine each of those substituions when combined with the
original graph:

Ezample 8. GUS(BGP'):

Where ?who = _:x:
_:x :loves :sheeva. # The S(BGP') merges with this triple.
_:y :loves :sheeva.
_:z :loves :zarrin.

Where Twho = _:y:
_:xX :loves :sheeva.
_:y :loves :sheeva.# The S(BGP’) merges with this triple.
_:z :loves :zarrin.

Where ?who = _:z:
_:xX :loves :sheeva.
_:y :loves :sheeva.

17 The only reason to replace BGP with BGP' is to ensure that there are no shared
BNodes between the original graph and the query except those introduced by a
substitution.

Querying the Web with SPARQL 65

_:z :loves :zarrin.
_:z :loves :sheeva.# S(BGP') appears with a spurious co-reference).

Clearly, the first two substitutions are entailed by G, whereas the third is not.
Consider what happens if we add a fresh BNode to the scoping set not included
in Sig(G):

Ezample 9. GU S(BGP'):

Where 7Twho = _:somethingFresh:
_:X :loves :sheeva.
_:y :loves :sheeva.
_:z :loves :zarrin.
_:somethingFresh :loves :sheeva.

But this is simply entailed by G as the last triple is entailed by either the first
or second triple alone. Thus, we can recover the exact behavior of unrestricted
simple entailment by adding an infinite supply of fresh BNodes to the scoping
set. Full minimality is harder to ensure and involves an increase in complexity (as
one must “leanify” the results), but also is not required by the current SPARQL
specification. In effect, we have a compromise between a full knowledge based
approach and a pure datastructural approach.

4 Algebraic Manipulation of Results

Now that we can extract a table from a graph via a BGP, we can manipluate
that table in a variety of more or less standard relational ways. The table and
algebra orientation of SPARQL is perhaps most obviously distinguishes it from
path oriented query languages, where the intermediate objects tend to be nodes
rather than tables of bindings.'®

4.1 A Bit of Syntax

A concrete, complete “core” SPARQL query consists of zero or more prefix
declarations, a query result form (we shall only consider the SELECT form), and
a where clause consisting of a number of BGPs with operations between them.
Consider this example (without operations):

Ezample 10. Core SPARQL query:
PREFIX ex: <http://ex.org/>
SELECT =

{?who ex:loves ?whom}

BGPs are delimited by curly braces, which are required in order to distinguish
distinct BGP arguments to various operators.

'8 One can typically simulate each approach in the other, at the cost of perspicuity and
concision, for example, see [4].

66 B. Parsia

4.2 Familiar Operations

There are three fundamental operations which can be performed on a result
set within a SPARQL query: projection, filtering, and conjunction. The project
function removes columns from a result set, in the standard way. Projections are
specified in the SELECT clause by listing the variables!® whose columns are
to be preserved, where * is the identity projection. For example, we can modify
the prior example to only give one column (e.g., the lovers, not the loved):

Ezample 11. Simple Projection:
Graph:

_:x :loves :mary.

_:xX :loves :sheeva.

_:y :loves :katayun.
Query:

PREFIX ex: <http://ex.org/>

SELECT ?who

{?who ex:loves ?7whom}

Evaluating this query against the graph will result in one column of answers.
The number of answers will vary with the semantics of the entailment relation
(and, if the DISTINCT solution modifier is added, on the particular semantics of
DISTINCT), but in any case we will have only two distinguishable answers. In
contrast, if we evaluate the same BGP with SELECT * we will get three clearly
distinct answers in the results set.

In addition to filtering out columns, we can filter out rows in a result set
by testing the value of a binding against a range of functions.?’ Row filters
syntactically appear inside a BGP but are understood as operations on a result
set, not as part of the core semantics of the query, though, if the base logic has
the correct expressiveness, this distinction can be moot. Certainly, in practical
query engines, one will push the filters as far down into the query plan as possible
to avoid generating inordinately large intermediate tables, or bringing in excess
data from disk.

Finally, we can combine result sets using the OPTIONAL or UNION operators.
These allow for a weak kind of disjunction in queries, restricted to result sets.

5 Conclusion

There is much missing in SPARQL, and much in SPARQL that we did not touch
on in this essay. SPARQL has a rich set of test functions, some aggregation and

19 Note that unlike many query languages, the SELECT clause does not determine
which variables are distinguished, or even pseudo-distinguished (i.e., taking BNodes
as values). BNodes in the BGP are non-distinguished whereas query variables are
all distinguished (or pseudo-distinguished if the scoping set contains BNodes).

20 See the SPARQL specification: http://www.w3.org/TR/rdf-sparql-query/# tests

Querying the Web with SPARQL 67

ordering operators, several interesting query forms (with the most notable be-
ing the CONSTRUCT form, which produces an RDF graph from a template and
a query result), and the ability to query over multiple identified graphs, or to
select graphs based on a query about them. Additionally, there is a minimal pro-
tocol for querying a dataset over raw HTTP or as a SOAP based Web Service.
Additionally, though not formally specified, the SPARQL query syntax has be-
come the de facto standard for conjunctive data query over OWL DL knowledge
bases.

SPARQL has many features well suited for the manipulation of semi-
structured data beyond merely its graph and RDF orientation. For example,
bindings to BNodes or, in the case of certain constructs, optionally bound vari-
ables make uniform querying of heterogeneously structured data — in particular,
data that is only partially congruous — succinct and effective. Not discussed in
this paper, but significant, is the introspective capabilities afforded by graph
variables. A single query can set up a series of subqueries that are applied based
on some inspection of the metadata of various graphs. Similarly, the controversial
DESCRIBE query form which returns an arbitrary, server defined RDF graph that
in some way “describes” the query answers makes it easier to explore graphs on
the fly. This close, in principle, alignment (some would say confusion) between a
browsing approach and a more structured query approach is at the heart of the
functioning of the web.

References

1. Franz Baader. Logic-based knowledge representation. In M. J. Wooldridge and
M. Veloso, editors, Artificial Intelligence Today, Recent Trends and Developments,
number 1600, pages 13—41. Springer Verlag, 1999.

2. Charles W. Bachman. The programmer as navigator. Commun. ACM, 16(11):653—
658, 1973.

3. Weidong Chen, Michael Kifer, and David Scott Warren. HILOG: A foundation
for higher-order logic programming. Journal of Logic Programming, 15(3):187-230,
1993.

4. F. Frasincar, G. Houben, R. Vdovjak, and P. Bar. RAL: An algebra for querying
RDF. In The 3rd International Conference On Web Information Systems Engineer-
ing (WISE 2002), 2002.

5. R. Goldman, J. McHugh, and J. Widom. From semistructured data to XML: Mi-
grating the Lore data model and query language. In Workshop on the Web and
Databases (WebDB ’99), pages 25-30, 1999.

Composition of Rule Sets and Ontologies

Uwe Afimann, Jendrik Johannes, Jakob Henriksson, and Ilie Savga

Institut fiir Software- und Multimediatechologie
Technische Universitdt Dresden
uwe.assmann, jendrik.johannes, jakob.henriksson, ilie.savga@tu-dresden.de

In order for ontologies to have the maximum impact, they need to be
widely shared. In order to minimize the intellectual effort involved in
developing an ontology, they need to be re-used. In the best of all possible
worlds, ontologies need to be composed. [45]

Abstract. To master large rule sets in ontologies and other logic-based
specifications, the ability to divide them into components plays an im-
portant role. While a naive approach treats the rule sets as black-box
components and composes them via combinators, their relationships are
usually so complicated that this approach fails to be useful in many
scenarios. Instead, the components should be ”opened” before compo-
sition. The paper presents several such ”gray-box composition” tech-
niques, namely fragment-based genericity and extension, inline template
expansions, semantic macros, and mixin layers. All approaches help to
structure large ontologies and rule-based specifications into fine-grained
components, from which they can be built up flexibly.

Models or specifications describing domains or systems can easily and quickly
grow in size. Big ontologies, such as the Gene Ontology', contain thousands of
concepts and relationships. Indeed, because it is difficult in general to construct
large models, some existing attempts have been criticized for their structure (see
e.g. [5]). The same is also valid for large rule-based specifications and ontologies.
Important questions to answer are: How to structure a large specification in a
good way? How to simplify the specification task for ontology engineers? How
to share parts of a model with other models so that the cost of construction
is reduced? While several authors have suggested that a division of a large on-
tology into components can be a decisive help to master the complexity of on-
tology engineering [34,39], several important questions remain open: How does
an adequate component model for ontologies look? Which grain size should it
have? Can we reuse small building blocks of ontologies in several contexts? Does
component-based ontology engineering scale?

One obvious idea for a solution, the employment of the object-oriented
paradigm, is not enough. Inheritance is a concept that is often misinterpreted,
either because it can be given several slightly different semantics, depending on

! http://www.geneontology.org/

P. Barahona et al. (Eds.): Reasoning Web 2006, LNCS 4126, pp. 68-92, 2006.
(© Springer-Verlag Berlin Heidelberg 2006

Composition of Rule Sets and Ontologies 69

the context in which it is used [10], or because application engineers have diffi-
culties to distinguish it from part-of relationships [5]. On the other hand, while
inheritance provides reuse for types, it does not so for rules: what does it means
to inherit from a rule set?

Unfortunately, also other well-known component models from software engi-
neering, such as CORBA [42], or EJB [28], suffer from several problems that
prevent their employment in ontological engineering. First of all, these models
are black-boz, in the sense that the components remain unchanged during com-
position. Often, changes to the interiors of a component are required to make
it more apt to its use context, but due to the black-box principle, the only way
components can be adapted is by wrapping. Secondly, these classical compo-
nent models are defined for binary languages. Of course, this is not the level
of abstraction on which model components should be reused, which should be
suited for modeling tasks in analysis and design. Thirdly, the components are
connected by linkers that link function definitions to function calls. However,
for rule-based languages, linking predicate definitions to predicate uses would be
more important, but this is not supported. Finally, model components should
be connected according to other static relationships than the call relation, for
instance, according to aggregation or inheritance. However, such connections are
not possible with current component models.

A typical model composition technique that can be applied to other relations
between language constructs than the call relation is genericity. It is already
employed in most modern object-oriented languages for classes (C++, Java 1.5,
Haskell, or Ada95 [25]), but so far, only in a restricted manner in rule-based
and ontology languages, with the notable exception of HiLog [11]. Genericity is
used to produce specific instances of language constructs (fragments) from other
generic fragments. For instance, specific types can be produced from generic
classes. Most often, this is used for type-safe collections: container classes are
programmed as generic skeletons and instantiated to type-specific containers
better apt for typing. One object-oriented language, BETA, drives the genericity
principle to the extreme [33]. In BETA, every fragment that can be produced by
the language is considered as a component that can be constructed, instantiated,
compiled, and linked in isolation. Furthermore, fragments can contain parametric
slots, generic parameters that can be filled by other fragments. Hence, BETA
components, fragments, are perfectly apt for reuse on all levels of abstraction
the language offers. However, this principle of universal genericity is not well
known and has not been applied to other languages.

This principle, universal genericity, and its cousin, universal extensibility, can
easily be applied to modeling languages, in particular, rule-based ontology lan-
guages, delivering important techniques for component-based ontology engineer-
ing, such as type-safe templates, type-safe macros (semantic macros), view-based
and aspect-based development. Thus, when ontologies are engineered from frag-
ment components, these principles can be applied to all concepts of an ontology
language, so that ontology lines (ontology families) can be built from ontology

70 U. ABmann et al.

components. Thus, the motivation behind this paper is the following: to show
how the elements of an ontology can be composed from fragments.

This paper starts out with an overview on several programming languages that
use fragment-based component models. Then, it transfers these concepts to the
elements of ontology languages. Basically, ontologies contain concepts, classes,
defined by a data definition language (DDL), and expressions, rules or con-
straints, defined by a data manipulation language (DML). Sections 2—4 transfer
fragment-based component models and the related technology of invasive com-
position to them. We start with invasive composition of queries, using a query
language for XML and RDF, Xcerpt, as an example. Then, we look at invasive
rule composition for Prolog. Finally, we show how the elements of rule-based
ontology languages, can be composed invasively. We demonstrate how F-logic
classes can be composed from partial classes, and, in the large, how ontologies
can be composed from partial class layers (mixin layers, Section 5). Finally, a
comparison to related work (Section 6) completes the paper.

1 Component-Based Engineering with Fragments

Future ontologies will be based on ontology components. We argue that the right
size of an ontology component for component-based ontology management is a
fragment of the underlying ontology language. Fragment components have been
invented in the research on object-oriented systems, and are used there for type-
safe adaptation of frameworks and unforeseen evolution, as can be seen from
languages, such as BETA. Fragment composition relies on three techniques: uni-
versal genericity, universal extension, and an appropriate composition language.
These principles allow for a maximal reuse of code and specification pieces, to
increase variability, and to improve extension and evolution.

1.1 The BETA Fragment Metaprogramming Environment

The first language which introduced universal genericity is BETA [33]. This lan-
guage and its development environment was developed as part of the Mjolner
project - a project for object-oriented software development environments, con-
ducted by a number of Scandinavian institutes [26].2 The BETA language is a
strongly typed object-oriented language with two main constructs, pattern and
object. Patterns describe classes, procedures, functions and other static concepts,
while objects and activation records represents their run-time instances.

What is interesting in the BETA programming language in relation to the con-
text of component-based development, is its solution for modularization, which
relies on the notion of fragments, fragment forms, and slots.

Definition 1. In BETA, a fragment is a sentential form, a partial sentence
derived by a nonterminal.

2 Remarkably, the inventors of BETA and its principle of universal genericity
stem from the same schools in Scandinavia who invented the principle of object
orientation.

Composition of Rule Sets and Ontologies 71

Fragments can be plain or generic. A plain, non-generic fragment is a partial
sentence of BETA, derived from a non-terminal, containing only terminals. A
generic fragment (a fragment form or template) is a fragment that still contains
nonterminals. Hence, a fragment form is a set of non-terminal and terminal
symbols derived from a non-terminal; it is the basic element to define a module
in the BETA system.

Using a specific notation, it is possible to write non-terminals inside forms that
can be replaced by other forms (slots®). Slots have a name and are typed by a
syntactic category, i.e., an element of BETA’s grammar (which corresponds to
a metaclass in a metamodel of BETA). A BETA slot is syntactically structured
by the following grammar rule:

Slot ::= ’<<SLOT’ Name ’:’ Metaclass '>>’ 1

| ’<<’ Name ’:’ Metaclass '>>’

where ><<’, the placeholder token, does not occur in BETA elsewhere and
Metaclass is an arbitrary nonterminal of the BETA grammar. Finally, when a
set of fragments is associated with a name, it is called a fragment group.

Ezample 1. The following example demonstrates a fragment form named
PersonTemplate of the syntactic category PatternDecl with a slot
EmployerSlot typed by the metaclass Attribute. The form is contained in
the file PersonTemplate.?

Listing 1.1. Fragment component in BETA.
PersonTemplate = {

name ’/home/assmann/PersonTemplate’ 2
Person: PatternDecl // typed by the syntactic category
Person: begin 4
PersonMembers: begin name: @ String <<EmployerSlot: Attribute>>
end
end 6

}

The slot of this form can be bound with the content of some other form. For
example, the code in the Listing 1.2 defines a fragment PersonFiller that has
as its origin PersonTemplate. The origin construct specifies that the fragment
EmployerSlot should be substituted for the corresponding slot in the compo-
nent PersonTemplate. Hence, the substitution is implicit, in the sense that a
definition of a slot is implicitly bound to its use. Since the substitution is typed
by a metaclass, it is type-safe.

Listing 1.2. Fragment component in BETA.

define fragment component PersonFiller = { 1
name ‘‘/home/assmann/PersonFiller '’
origin ‘‘/home/assmann/PersonTemplate ’’ 3
EmployerSlot: Attribute // typed by the syntactic category
EmployerSlot: employer: @ Employer; salary: Integer 5

3 The word slot has here a slightly different meaning than a slot of a frame in frame
logic. However, it also indicates a “hole in a template”.

4 For readability, the original BETA brackets (# and #) have been replaced by begin
and end, respectively.

72 U. ABmann et al.

The result of the parameterization or substitution—the extent of the
fragment—is the composition of the two initial forms and is represented List-
ing 1.3.

Listing 1.3. Result component in BETA.

Person: begin

name: @Q String; 2

employer: @ Employer;

salary: Integer; 4
end

Hence, the BETA compiler treats fragments as components; it can even compile
fragment forms separately and link them in binary form. As a composition opera-
tion, the compiler applies type-safe parameterization, filling a fragment into a slot.
Hence, the interface of a BETA component consists of named slots typed by the
BETA metamodel. Through this composition interface, language constructs flow
from fragments to fragment forms: definitions, types, expressions, statements.

Because BETA allows for genericity on all language constructs, we define the
following:

Definition 2. A language is called universally generic, if it provides genericity
for every language construct.

1.2 Hyperspace Programming

Hyperspace programming proposes universal extension. This principle means
that every collection-like language construct can be extended from a use context.

Hyperspace programming also builds on the concepts of fragments and frag-
ment groups (although forms are neglected), and adds the concepts of concerns
and hyperslices. Concerns are sets of semantically related fragment groups, which
describe one aspect of the software. Concerns can be grouped to hyperslices,
declaratively complete concerns, that define all items they use, so that they can
be compiled and executed. Finally, hyperslices are composed to an executable
system. Several composition operators are available for hyperspace program-
ming. The most interesting one is the merge operator, which merges collection-
like fragments that have the same name. For instance, when two classes in dif-
ferent hyperslices have been defined under the same name (denoting two differ-
ent views of a class), the merge operator can merge the classes together, while
eliminating replicates and signaling conflicts. The merge operator also merges
entire hyperslices, point-wisely applying merges on the contained collection-like
constructs.

Hyperspace programming has been realized for Java in the tool Hyper/J [48].
Hyper/J can deal with class and method fragments (signature definitions and
method bodies). It can extract semantically related method fragments from Java
packages, and group them to concerns. From such concerns, Java hyperslices
can be composed. Those are then complete Java packages, which contain several
concerns, and can be compiled and executed. Hence, hyperslices correspond to
views for Java classes that can be composed, merging all contained classes with
identical names together, and resulting in complete Java systems.

Composition of Rule Sets and Ontologies 73

Ezxample 2. As an example, consider the following two concerns that define views
for the classes Person.

define concern PersonalConcern = { 1
class Person {
String name; 3
int age;
} 5
}
define concern EmploymentConcern = { 7
class Person {
Employer employer; 9

int salary;
11
class Employer { }

} 13
define concern PoliticalConcern = {
class Person { 15
String politicalParty ;
int contribution; 17

19
define hyperslice Employment =
PersonalConcern . merge (EmploymentConcern) ;
define hyperslice PartyMember = 21
PersonalConcern . merge(PoliticalConcern) ;
define hyperslice PersonInfo = Employment.merge (PartyMember) ;

In this example, all concerns define information about persons from different
perspectives. Hyperslices can be composed from two basic concerns, merging
all their class fragments together with a point-wise merge. Finally, a hyperslice
PersonInfo assembles a complete Java package that can be reused®.

That a class in a hyperslice can be merged with another class, can also be
interpreted as an extension of one class with another. As a necessary condition,
an extensible construct in a hyperslice must have the form of a collection (e.g.,
classes or method bodies). In general, a merge of two hyperslices can be inter-
preted as a point-wise extension of all contained constructs. To this end, we can
introduce, similarly to slots, extension points (hooks) in the constructs that can
indicate where a construct can be extended. Hooks obey the following syntax:

Hook ::= ’<<HOOK’ Name ’:’ Metaclass ’>>’
| ’<+4+’ Name ’:’ Metaclass '+>’ 2

With hooks, the above example can be rephrased as extension of hooks [4]:

define concern PersonalConcern = {
class Person { 2
String name;
<+ personHook: Attribute+> 4
int age;
} 6
}
define concern EmploymentConcern = { 8
class Person {
Employer employer; 10

int salary;
12
class Employer {

5 For composition expressions, we use an object-oriented style, i.e., group composition
operations to fragments. Also functional style can be employed.

74 U. ABmann et al.

<+ employerHook: Attribute+> 14
}
16
define concern PoliticalConcern = {
class Person { 18
String politicalParty ;
int contribution ; 20

22
define hyperslice Employment =
PersonalConcern . personHook . extend (EmploymentConcern) ; 24
define hyperslice Full =
Employment . personHook . extend (PoliticalConcern) ;

resulting in

hyperslice Full = { 1
class Person {

String name; 3
Employer employer;
int salary; 5
String politicalParty ;
int contribution ; 7
int age;

class Employer {
11

}

Extension operations have several advantages over merge operations. While
merge operations usually provide a shorter notation, extension operations use
extension points to steer the composition in a more fine-grained way. Because
extension points are explicitly specified, they offer a extension interface for frag-
ment components, i.e., inform a composition system where they can be extended.
In this way, parts of components can be hidden, i.e., protected against changes,
while, when merge operations have to be applied, the component is opened
up as a white-box. We conjecture, that such an extension interface is better
for component-based engineering, because it provides information hiding [37]. In
the following, we will use both operations, supposing that merges and extensions
are related, and merges can always be reduced to extensions, given appropriate
extension points.

While Hyper/J employs the extension principle only to classes and method
bodies, we can generalize it to all collection-like language constructs of a pro-
gramming or modeling language:

Definition 3. A language is called universally extensible, if it provides exten-
sibility for every collection-like language construct.

1.3 Distinguishing Modeling-In-The-Large

A further issue is that the comprehension of large systems and models can be
improved by the distinction of an architectural description. [15] were the first to
argue that programs in-the-small are essentially different from programs in-the-
large. They suggest that in a system, two layers, architecture and application-
specific components, should be distinguished. Then, the architecture gives an
overview of the system and abstracts from application-specific details, hiding

Composition of Rule Sets and Ontologies 75

them in the components, so that the system can be comprehended much more
easily. Clearly, this abstraction feature would be useful also to comprehend large
ontologies. But what is the architecture of an ontology?

With an explicit architecture, appropriate languages can be employed for
programming in-the-large and for programming in-the-small that are tailored to
their purpose. Depending on the kind of system, researchers have suggested dif-
ferent Architecture Description Languages (ADL). Standard ADL are based on
structured, reducible process graphs [21] that are connected by connectors, spe-
cial components responsible for communication. Other architectural languages
are expression-based, i.e., rely on side-effect free functions [47]. [14,12] have sug-
gested to use higher-order functions (skeletons) to describe architectures. Noth-
ing seems to prevent logic-based architectural languages, but this idea is not yet
explored; instead, logic is only used as a specification language for architectural
constraints [20]. So, how does the architectural language of an ontology look?

Also, the separation of an architectural aspect introduces two dimensions of
reuse: components can be reused for different architectures, and architectures
can be reused for components. Beyond simple component-based engineering, this
principle strengthens the reuse factor because reuse combinations are quadratic
and no longer linear. So, how to reuse the architecture and the components of
an ontology?

Unfortunately, architectural description languages cannot easily be transfered
to ontologies, because they define component models for communication archi-
tectures. In an architectural language, the component interface describes data
flow in and out of a component, or, which services are provided in the form of
procedure calls and returns. Since logic languages are declarative, other types of
components interfaces and composition operations have to be developed; classi-
cal component models are out of question. We have seen that fragments can be
used as components.® But how do fragment composition languages look?

1.4 Invasive Software Composition

Invasive software composition (ISC) combines the previously presented ideas, com-
bining universal genericity, universal extension, and a language for composition-
in-the-large [4]. Firstly, principles of universal genericity and extensibility are sup-
ported with a primitive set of explicit composition operators that combine
fragments: bind (parameterization, substitution), extend, copy, and rename. The
bind operation fills slots with fragments, the extend operation appends new frag-
ments to the hooks, and the copy and rename operations do what their names in-
dicate. More complex composition operations, such as merge, connectors, or as-
pect weavers can be reduced to universal genericity and extensibility. Thus, with
ISC, several complex composition paradigms, such as generic programming [33],
connector-based programming [21], view-based programming [47], or aspect-
oriented programming [29] can easily be modeled. Basically, invasive composition
reduces all paradigms to the basic techniques of genericity and extensibility.

5 It should be remarked that binary components also consist of fragments, but frag-
ments of a binary language.

76 U. ABmann et al.

Secondly, ISC describes the structure of a system in-the-large with a com-
position language, which glues the basic operations on components together.
This language is used not only to specify architectures, but also to build ex-
pressions and programs, that describe compositions of fragments in-the-large.
That is, composition programs describe how components are plugged together
to systems.Essentially, invasive composition consists of a composition algebra in
the spirit of [7], but is based on parameterization and extension. Finally, while
the basic operations are ubiquitous, ISC does not rely on a specific composition
language; imperative, functional, and rule-based languages can be employed.

Ezxample 3. Generic programming in the way of BETA can easily be simulated
by ISC. The bind operation binds slots to fragments, i.e., instead of implicitly
binding a slot to a fragment as in BETA, the binding must be done explicit.
Examples in Listings 1.1-1.2 would be written in ISC as an explicit parameter-
ization:

Listing 1.4. Explicit binding of forms.
PersonTemplate. EmployerSlot.bind (PersonFiller);

which results in the same component as in Listing 1.3. The second mechanism,
extensibility, is realized by the ubiquitous operator extend. It can be applied to all
collection-like constructs in a language. For instance, extending the component
PersonalConcern from above works in ISC similarly to hyperspaces:

Listing 1.5. Extending forms.

define fragment component Employment = 1
PersonalConcern . personHook . extend (EmploymentConcern) ;

An important observation is that in general, the principles of invasive compo-
sition can be superimposed on all languages. The requirements—bindings rely
on slots, i.e., unexpanded nonterminals, extends rely on collection-like language
constructs—are general enough that every language, also a rule-based ontology
language, can meet them. However, since every language has a data definition
(DDL) and a data manipulation sub-language (DML), the task of invasive com-
position falls into two categories:

Concept Composition. This task composes fragments of the DDL, i.e.,
classes, types, or views on them are composed. Basically, a set of types
is computed from a set of fragments.

Expression Composition. This task is about composing fragments of expres-
sions (DML composition). Basically, expressions, statements, queries, rule
sets, or methods are composed from a set of fragment components.

At this point, it should be clear that a fragment-based component model for
rule-based ontologies has many advantages, so that a future composition environ-
ment for rule-based ontologies should support it. Such a system could, building
on the principles of universal genericity, universal extension, and a composi-
tion language, offer view-based, connector-based, and aspect-based development

Composition of Rule Sets and Ontologies 7

techniques, by which large ontologies can more easily be constructed. The rest
of the paper applies these principles of invasive software composition to rule-
based and ontology languages, transferring several programming paradigms to
DDL and DML ontology compositions. We start in the next section with invasive
composition of queries.

2 Invasive Query Composition

In this section, we demonstrate the principles of invasive composition on the
XML query and transformation language Xcerpt [9]. As in BETA, our approach
is metamodel-supported to enable type-safe compositions. For the case of Xcerpt,
we assume a metamodel describing all the constructs of the language and their
relationships. In addition, to enable universal genericity and extensibility, this
metamodel is augmented with slot and hook constructs, each derived from con-
structs in the core language metamodel. These additional constructs allow us to
explicitly define the variation points (i.e. the interface) of the components.

A difference between Xcerpt, often stressed in its favor, and other XML query
and transformation languages [6,17], is the separation in its rules of the way
documents are queried and the way the result is constructed.

Listing 1.6. An Xcerpt rule constructing a list of all clerks for each manager from a
database document.

define fragment component allClerksForManagerConstruct = {
CONSTRUCT 2
result {
all result { 4
var Manager,
all var Clerk 6
}
} 8
FROM
in { 10
resource { ‘‘http://employee.example.com’’ } |
management {{ 12
staff {{
var Manager —> manager |, 14
clerks {{
var Clerk —> clerk 16
iy
1} 18
3
} 20
END
} 22

In Listing 1.6, we find an Xcerpt rule which extracts information about man-
agers and clerks from a document and constructs the result by listing all clerks
for each manager. Thanks to this clear separation of concerns found in Xcerpt,
we are able to produce components which can be reused in several rules. In this
example, we have made a component out of the query part of the rule in Listing
1.6, to be found in Listing 1.7. This query component can then be re-used in
several rules which might construct the result in a different manner.

78 U. ABmann et al.

Listing 1.7. Xcerpt component describing an Xcerpt fragment, a query fetching all
managers and clerks from a database document.

define fragment component employeeQuery = {
in { 2
resource { ‘‘http://employee.example.com’’ } ,
management {{ 4
staff {{
var Manager —> manager |, 6
clerks {{
var Clerk —> clerk 8
I8
1} 10
T
} 12
}

The remaining part of the original rule, found in Listing 1.8, now contains a
slot where the query used to be (Line 10). Note that this slot is a valid construct
of the extended language description.

Listing 1.8. Xcerpt component describing how to construct an answer, listing all clerks
for each manager.

define fragment component allClerksForManagerConstruct = { 1
CONSTRUCT
result { 3
all result {
var Manager, 5
all var Clerk
} 7
¥
FROM 9
<<employeeQuery : Query>>
END 11
}

Using a composition script (Listing 1.9), we can assemble the two components
in Listing 1.8 and 1.7 and produce the complete Xcerpt as expected (Listing 1.6).

Listing 1.9. Composition script producing Listing 1.6
allClerksForManagerConstruct . employeeQuery . bind (employeeQuery) ;

In-line template expansions for comprehensibility For ease of specification of
the compositions, also in-line specifications are possible. They improve compre-
hensibility, because parameterizations and extensions are seen in the context of
their embedding. The composition script would then be included in one compo-
nent and the overall composition would be specified from there. The component
allClerksForManagerConstruct, from the previous example, would look a lit-
tle bit different (Listing 1.10). Instead of specifying a slot on Line 10 in Listing
1.10, a bind operation is performed in-line during composition. Binding the com-
ponent employeeQuery (Listing 1.7) in that position would again produce the
expected Xcerpt program (Listing 1.6).

Listing 1.10. Example of in-line template expansion

define fragment component allClerksForManagerConstruct = { 1
CONSTRUCT
result { 3

all result {

Composition of Rule Sets and Ontologies 79

var Manager,
all var Clerk

o

} 7
}
FROM 9
bind (employeeQuery)
END 11

}

Using in-line template expansions in this fashion speeds up the writing of
composition-based applications, because components and compositions are spec-
ified together.

Semantic macros for context parameterization Semantic macros provide param-
eterized in-line compositions, another form of in-line compositions that go one
step beyond type-safe template expansion, because they incorporate context in-
formation into the compositions [31]. Instead of parameterizing a slot with a
fixed fragment, they take fragments from their application context as param-
eters, bind them to the slots of a body template, and embed the expanded
template in-place, i.e. where the composition was specified:

Listing 1.11. A semantic macro and how to use it.

define semmacro constructResult (q:Query) = {
CONSTRUCT 2
result {
all result { 4
var Manager,
all var Clerk 6
¥
} 8
FROM
<<q:Query>> 10
END
} 12
fragment component result = constructResult (employeeQuery) ; 14

The composed component result in Listing 1.11 is constructed on Line 14 by
parameterizing the semantic macro constructResult with the fragment com-
ponent employeeQuery.

An application of a semantic macro reduces to parameterizations of copies of
its fragment form. Every actual parameter that is passed to a semantic macro is
equivalent to a parameterization statement that fills a slot of the body template
of the semantic macro. For instance, the above application is equivalent to:

// copy template

fragment component result = new constructResult.Body; 2
// parameterization
result .q.bind (employeeQuery) ; 4

In summary, a semantic macro contains a fragment component, which is in-
stantiated with slot parameters and expanded in-place. All bindings are type-
safe, i.e., they are controlled by the type specifications of the macro parameters.

Aspect-oriented queries Beyond template expansion, semantic macros offer a
limited form of aspect orientation [29]. For instance, one can weave a name
component into many slots of a core construction component (aka joinpoints):

80 U. ABmann et al.

define semmacro constructResult(manager:Name, clerk :Name) = {
CONSTRUCT 2
result {
all result { 4
var <<manager : Name>>,
all var <<clerk :Name>> 6
b3
} 8
FROM in {
resource { ‘‘http://employee.example.com’’ } , 10
management {{
staff {{ 12
var <<manager :Name>> —> manager
clerks {{ 14
var <<clerk :Name>> —> clerk
}} 6
i9s
1} 18
}
END 20
}
define fragment component ManagerComp = { Man } 22

define fragment component ClerkComp = { Cle }
24
fragment component query = constructResult (ManagerComp, ClerkComp) ;

Here, variable names for managers and clerks can be tailored to different
names, by weaving some name components over several points in the core query.

Thus, semantic macros offer a simple form of aspect-oriented query language.
Furthermore, since semantic macros have parameters that can be filled with
information from the application context, they can even tailor the aspect with
regard to the context into which it is woven.

3 Invasive Rule Composition

In Section 2, we looked at how to invasively compose fragments of a rule-based
language, the XML query and transformation language Xcerpt. In this section,
we will look at a more standard form of rule language, Prolog. This section will
take us one step closer to demonstrating how it is possible to compose fragment
components of rule-based ontology languages. Rules will play a big role in future
ontology languages, see Section 4 for further discussion.

In a rule-based language with universal extensibility, all language constructs
are extensible that can be embedded into collections [3]. This means that rules
can be extended by additional preconditions or conclusions (open rules), predi-
cates can be extended by new members (open predicates), precondition clauses
can be extended (open clauses), and rule sets can be extended by new rules
(open queries). Such open constructs can be extended by composition programs
to add more preconditions, conclusions, clauses, or rules to a query. Below we
will look at an example that applies this to Prolog rules.

Listing 1.12 defines a generic depth-first search algorithm in Prolog.

Listing 1.12. Depth-first search algorithm.
define fragment component search = { 1
<<SearchCommand : PName>>(X,Y) :—
<<SearchCommand : PName>>(X,Y, Solution) .

}

Composition of Rule Sets and Ontologies

<<SearchCommand : PName>>(X,Y, Solution) :—
<<Edge:PName>>(X,) , <<Edge:PName>>(_-,Y),
depthfirstsearch (X,Y, Solution) .
depthfirstsearch (Start , Destination , Solution) :—
depthfirstsearch (Start ,[Start], Destination ,Solution).
depthfirstsearch (Destination ,Path, Destination , Solution) :—
Solution = Path,<+ActionAtDestination: Predicate+ >,!.
depthfirstsearch (NodeA, Path, Destination , Solution):—
<<Edge : PName>>(NodeA ,NodeN) ,
not (member (NodeN, Path)) ,
depthfirstsearch (NodeN, [NodeN |Path], Destination , Solution) .

81

In Listing 1.13, we have a set of facts, but with an unnamed fact-relation.
The relations are slots to be filled with a predicate name through a composition
program, before the final rule is produced. In this fact-base, all relations will be
bound to the same predicate name.

Listing 1.13. Facts for the generic search algorithm.

define fragment component whoKnowsWho = {

}

<<KnowsAboutRelation : PName>>(amy, lilly).
<<KnowsAboutRelation : PName>>(amy, james) .
<<KnowsAboutRelation :PName>>(lilly ,james) .
<<KnowsAboutRelation : PName>>(amy, profSmith) .
<<KnowsAboutRelation : PName>>(james , profSmith) .
<<KnowsAboutRelation : PName>>(amy, billGates) .
<<KnowsAboutRelation : PName>>(james , billGates) .
<<KnowsAboutRelation : PName>>(profSmith , billGates) .

8

10

The components in Listing 1.14 define names for parameterizations and a
semantic macro.

Listing 1.14. Name components and a semantic macro.

define fragment component knows = { knows }
define fragment component connection = { connection }
define semmacro output(v:Variable) = {

}

write (¢ ‘found a friend ’’), write(v)

Listing 1.15 shows the composition program which defines how the fragment
components will be put together to produce the complete Prolog program shown
in Listing 1.16.

Listing 1.15. Composition program

whoKnowsWho. KnowsAboutRelation . bind (knows) .

search .Edge. bind (knows) .

search .SearchCommand . bind (connection) .

search. ActionAtDestination.extend (output (Destination)).

Listing 1.16. Composed Prolog program

knows (amy, lilly).
knows (amy, james) .

knows

lilly ,james) .

knows (james , profSmith) .
knows (amy, billGates) .
knows (james, billGates) .

(
(
knows (amy, profSmith) .
(
(
(

connection (X,Y) :— connection (X,Y, Solution).

82 U. ABmann et al.

connection (X,Y, Solution) :— 10
knows (X, -), knows(-,Y),
depthfirstsearch (X,Y, Solution) . 12
depthfirstsearch (Start , Destination , Solution) :—
depthfirstsearch (Start ,[Start],Destination , Solution). 14
depthfirstsearch (Destination ,Path, Destination , Solution) :—
Solution = Path, 16
write (¢ ‘found a friend ’’), write(Destination), !.
depthfirstsearch (NodeA, Path, Destination , Solution):— 18
knows (NodeA ,NodeN) ,
not (member (NodeN, Path)) , 20

depthfirstsearch (NodeN,[NodeN|Path],Destination , Solution).

Hence, the principles of universal genericity and universal extension, including
in-line template parameterization and semantic macros, can be transfered to
rule-based logic languages, too. This paves the way for rule components, also in
ontology languages, as the next section shows.

4 Invasive Rule-Based Ontology Composition

In Section 3, we looked at how to invasively compose fragments of a rule lan-
guage, Prolog. While some of the well-known ontology languages, based on De-
scription Logic [38,13], do not include rule constructs, rules have come to play a
larger role for ontologies. Recently, much effort has been put into how to solve a
long standing issue for the Semantic Web, how to integrate rules with ontology
languages [24,23,18,2,36,40].

There exists several approaches to integrating rules and ontologies. For a
survey of such approaches, please refer to [27]. Examples of such integrations
include, for example, the rule extension of the standardized Web Ontology Lan-
guage OWL [38], whose XML encoding is known as the Semantic Web Rule
Language (SWRL) [24]. Description Logic Programs (DLP) [23] form an inter-
section between Description Logics and monotonic rules. Such an intersection
creates a minimal rule-based ontology language; the entire ontology is described
in rules and can be solved in a rule reasoner. Another attempt tries to devi-
ate from the popular approach of extending OWL with rules, instead the lesser
language RDF [22] is extended with rules into Extended RDF [1]. The purpose
here is not to give an extensive overview of the different integration approaches
and their semantics, but rather to make the reader aware of the current trend
to include the concept of rules in ontology languages. Different rules languages
have been investigated for this kind of integration. However, the most common
rule language is Datalog, or one of its extensions. The syntax of these rules are
similar to the logic programming rules that were composed in Section 3. Thus,
rules are becoming a key ingredient in ontology languages and play an important
role in the Semantic Web and its languages.

In the following, we discuss rule-based ontology compositions, i.e., composing
concepts and rules together. It should be clear from the previous sections that
universal genericity and extensibility can be provided for all concepts of rule-
based ontology languages, also classes and rules. As a first example, we consider
the extension of base classes in concept inheritance hierarchies, for instance,

Composition of Rule Sets and Ontologies 83

from legacy ontologies. This is important in ontology integration and alignment.
As a second example, we look at the composition of classes with mixin-based
inheritance, a systematic structuring of classes, which is useful in particular if
the class descriptions grow large. In the following, we use F-logic as a rule-
based ontology language [30]. However, since the ideas of universal genericity
and universal extensibility applies to every languages, ontology and rule-based
ontology languages such as OWL and SWRL can also be treated.

In Section 5, we provide an outlook on what needs to be accomplished to
structure ontologies in-the-large. The key idea is to extend mixin-based class
composition such that the model can be structured in layers (mizin layers),
forming a structural outline of the model. Then, every final class is composed
from class components, the mixins, each for every layer.

4.1 Base Class Extension

Often, in evolution of ontologies, it is necessary to extend a base class of a concept
hierarchy. Because inheritance is hard-wired in class specifications, this is usu-
ally impossible to do directly. Base class extension can be achieved with design
patterns such as Decorator [19], but then, extended and extension information
reside in two classes (an effect called object schizophrenia [46]). Alternatively,
base classes can be re-defined, or multiply defined, i.e., the extension does not
introduce a new class, but contributes its features as a view. From Section 1, it
is clear that the merge operator in hyperspace programming can be applied to
merge the views; alternatively, the universal extend operator can be employed.

Example 4. As an example, consider the following F-logic fragment, a simple
inheritance hierarchy defining customers. As an integrity constraint, person cus-
tomers are not allowed to have debts, companies do (:: means inheritance, []
are scope brackets for classes, => means type annotation, and members is an
implicitly defined hook for the end of a class member list).

Listing 1.17. Base class extension in F-logic.

person [name=>string |; 1
company :: organization [money=>integer |;

customer :: person [money=>natural]; 3
FORALL X <— customer [money=>X], X >= 0; // no debts allowed
companyCustomer : : company ; 5
companyCustomer :: customer ;

personCustomer :: customer ; 7

The base class person in this inheritance hierarchy can be extended as follows:

Listing 1.18. Base class extension in F-logic.

personExtension [age=>natural |; 1
// Base class extension with the merge operator 3
person . merge (personExtension);

// or with an implicit extension point members 5

person . members. extend (personExtension);

which introduces a second definition to the class person, enriching it with the
feature age.

84 U. ABmann et al.

Base class extension is very important for the integration of legacy ontologies
into applications, because it makes it easy to enrich legacy inheritance hierarchies
with new information. OWL (and thus SWRL) offers base class extension in a
similar way by allowing classes and relationships to be re-defined at any time,
thus providing a “built-in” merge operator for such concepts.

Hence, in the following, whenever we employ the merge and extend operators
for F-logic on classes and relationships, the arguments also hold for OWL and
SWRL.

4.2 Mixins Composition

Besides the standard notion of inheritance, several object-oriented languages
have employed mizin-based inheritance [35,8]. Mixins are partial and abstract
classes, i.e, cannot be instantiated to objects. However, they contribute to classes
by contributing their features to them (that is why they are called mixins).
Because the order, in which several mixins are inherited into a base class, must
be explicitly specified, mixin-based inheritance seems to be easier to understand
than standard multiple inheritance, in which the strategy of feature resolution
is often implicit and hidden [35]. The following is an example in F-logic. The
feature money is defined and replicated in company and customer. From which
should companyCustomer inherit it?

Listing 1.19. Multiple inheritance in F-logic.

person [name=>string |;

company [money=>integer | ; 2
customer :: person [money=>natural |;

FORALL X <— customer [money=>X], X >= 0; // no debts allowed 4
companyCustomer : : company ;

companyCustomer :: customer ; 6

personCustomer :: customer ;

With mixin-based inheritance, the example looks as follows:

Listing 1.20. Mixin-based inheritance in F-logic.

person [name=>string |; 1
mixin company [money=>integer |;

mixin customer [money=>natural]; 3
FORALL X <— customer :: person [money=>X], X >= 0; // no debts allowed
companyCustomer = customer.members. extend (company) ; 5

personCustomer :: customer ;

This example is more comprehensible, because the extension order is explicitly
specified: companyCustomer is composed by extending company with customer,
which implies that features of customer override those of company, so that the
companyCustomer is not permitted to make debts.

If a language does not offer hooks, but generic classes, an alternative to the
application of the extend operator exists. Batory has shown how to realize mixin-
based inheritance in a universally generic language [44]. The trick is to combine
inheritance with parameterization, i.e., the extend operator can be simulated
by parameterizing a superclass reference. Then, a mixin becomes a class with a
parameterized superclass:

Composition of Rule Sets and Ontologies 85

Listing 1.21. Mixin-based inheritance in generic F-logic.

person [name=>string |;

company::<<super : Class >>[money=>integer |; 2
customer::<<super : Class >>[money=>natural |;

FORALL X <— customer [money=>X], X >= 0; // no debts allowed 4
companyCustomer = customer.super.bind (company) ; 6
personCustomer = customer.super.bind(person);

In this way, company becomes a superclass of companyCustomer, which means
that its features are overridden.

5 Applications

Mixins can systematically be arranged in layers, which structures a class model
in-the-large [44]. This is further explored in this section.

5.1 Composing Class Variants with Mixins

Mixins can be arranged in layers, so that each layer realizes a concern of the
domain. When there exist variants for mixins on each layer, the result is a variant
space for class composition.

Ezxample 5. When modeling graphs with a graph ontology, many concerns play
a role, for instance, whether or not the nodes should have a type (core concern),
whether or not there should be explicit edge objects (explicit edges concern) or
whether the graph should be unidirectional or bidirectional (symmetry concern).
Every concern leads to one or several variabilities, i.e., modeling decisions about
the features of the class with regard to the concerns (=>> means a set of typed
objects).

concern core = { 1
Core :: Thing;
UntypedNode :: Core[name=>string |; 3
TypedNode :: UntypedNode[type=>string |;
5
concern edge = {
Neighbor :: Thing; 7
Node :: Neighbor;
Edge :: Neighbor; 9
ForwardEdges [outgoing=>>Neighbor; fanOut=>int];
BackwardEdges [incoming=>>Neighbor; fanIn=>int]; 11
}
concern symmetry = { 13
Unidirectional = ForwardEdges;
Bidirectional = ForwardEdges.members. extend (BackwardEdges) ; 15
}

When a graph node it modeled, its features have to be selected according to
the variability decisions: for instance, a graph node should be composed from a
core concern, talking about names and/or types; an edge concern, talking about
neighbor edges or edge objects (outgoing, fan-out); and a symmetry concern,
talking about also incoming edges. Hence, composing a graph node means to
select one alternative mixin from every concern and extend the core class with
them. For instance, a typed node with bidirectional relations is composed as
follows:

86 U. ABmann et al.

TypedNodeBidirectional = TypedNode.members. extend (Bidirectional) ;

resulting in

TypedNodeBidirectional :: Thing | 1
name=>string ;
type=>string ; 3
outgoing=>>Neighbor; fanOut=>int;
incoming=>>Neighbor; fanIn=>int; 5

[E

On the other hand, an untyped node with forward relations is composed as
follows:

UntypedNodeUnidirectional =
UntypedNode. members. extend (Unidirectional) ;

resulting in

UntypedNodeUnidirectional :: Thing | 1
name=>string ;
outgoing=>>Neighbor; fanOut=>int; 3

IE

Similarly, other ingredients of a graph, edges or graph objects can be com-
posed [44,43].

With mixins, classes can systematically be defined in variants. Variants can
offer alternative interfaces for concerns, or alternative implementations for an
interface. Using variants of mixins for a concern leads to different composition
results. All variants for all concerns form a variant space, and the selection of a
mixin for a variant means to select a variant configuration.

Usually a mixin characterizes one concern of a class, for instance, a role in a
collaboration. Recent research has found out that associations between classes
define roles that an object plays in a certain context (the roles taking part in an
association form a collaboration [16]). Hence, mixins characterize the behavior
of a class in a certain collaboration context, and if the behavior of the class
should be modeled in variants, mixins can model the behavioral variants. In our
example, the concerns describe the behavior of a graph node in the context of
other graph nodes, i.e., in a collaboration with other nodes and edges of a graph.
Hence, variants of such collaborative behavior can be modeled systematically,
grouped to concerns, and composed to classes in the variant space for graphs.

For ontology engineering, mixin composition is useful in several respects. First,
it should be employed, if an ontology must be modeled in a variant space, i.e.,
if several basic variability decisions (modeling alternatives) exist, and all combi-
nations of these alternatives form valid domain objects. Such ontology variant
spaces are by no means restricted to mathematical domains like the graphs, but
relate to all domains, where collaborations of an object or concept can be varied.
Then, collaboration variants can be composed by mixin composition. Addition-
ally, commercial reasons may create a need for mixin composition. Most often,
business domains, such as business rules or product data domains, require variant
spaces, because they form the backbone of a product line, a set of products that
differ only marginally, but should be sold separately. With mixin composition,
it is easy to model the feature space of a product line systematically.

Composition of Rule Sets and Ontologies 87

Next, it is well-known that many classifications are based on dimensions (facet
classifications) [49]. Whenever objects have several orthogonal partitions, facets
can be defined, independent classification dimensions, in which objects can be de-
scribed, and whose cross-product gives the whole characterization. Because every
facet provides a basic variability decision for the model, a concrete classification
selects a combination of variants. Hence, facet spaces form orthogonal variant
spaces for ontologies. Furthermore, facet classifications may underly restriction
constraints [49]. Then, the facets are not independent, but several combinations
are excluded. For instance, it might be prohibited for a graph to contain both
untyped and typed edges. Such illegal combinations can be excluded from the
variant space by integrity constraints, but, anyway, faceted domains are subject
to concern modeling and mixin composition.

5.2 Composing Class Variant Spaces with Mixin Layers

Mixin compositions form singular objects or concepts. However, for a set of col-
laborating concepts or objects, layers can group dependent mixin variants of all
collaborating objects together. Then, we speak of mizin layer composition [44].
Composing mixin layers means to compose all classes of the model together from
all collaborating mixin parts. To this end, collaborating mixins are grouped in
layers. These mixin layers, like single mixins, can be defined in variants, and
every variant forms an aligned, syntonic set of mixins who collaborate consis-
tently. Hence, a concern that crosscuts several objects, can be described by a
single layer of collaborating mixins. If several variants of the layer exist, the
appropriate realization of the concern can be chosen by selecting a mixin layer
variant, containing a set of coherently collaborating mixins. This coherent selec-
tion is very important for defining consistent large ontologies: in one go, large
collaborations of concepts and objects can be selected and wired together easily.

Ezxample 6. For the graph ontology, apart from graph nodes, also graph edges
and graph objects must be modeled. Naturally, since all these concepts interact,
they should be modeled consistently. For instance, depending on whether a uni-
directional or bidirectional graph is modeled, edges and nodes must fit together;
either both have to model only the forward relationship or both have to model
also the backward relationship.

concern core = {
layer UntypedCore = { 2
Node :: Thing [name=>string |;
Edge :: Thing; 4
Graph :: Thing[name=>string; nodes=>>Node, edges=>>Edge];
6
layer TypedCore = {
Node :: Thing[name=>string ;type=>string]; 8
Edge :: Thing[type=>string |;
Graph :: Thing[name=>string; nodes=>>Node, edges=>>Edge]; 10
}
} 12
concern edge = {
layer ForwardRelation { 14

Node [outgoing=>>Edge; fanOut=>int |;
Edge [Node=>successor |; 16

88 U. ABmann et al.

Graph [sources=>>Node];

Sink :: Node; FORALL X: Sink[fanOut=>X], X=0. // no successors 18
¥
layer BackwardRelation { 20
Node [incoming=>>Edge; fanIn=>int];
Edge [Node=>predecessor |; 22
Graph [sinks=>>Node] ;
Source :: Node; FORALL X: Source[fanIn=>X], X=0. // no 24
predecessors
}
} 26
concern symmetry = {
layer Unidirectional = ForwardRelation; 28
layer Bidirectional = ForwardRelation.merge(BackwardRelation);
} 30

A mixin layer has to define an extension for every corresponding core object.
(Here, in this simple case, the correlation is indicated by the same name, but
more complicated schemes can be applied.) This time, the graph ontology is
composed from mixin layer variants:

UntypedForwardGraph = UntypedCore.merge(Unidirectional);

TypedSymmetricGraph = TypedCore.merge(Bidirectional); 2
resulting in

UntypedForwardGraph = {

Node :: Thing [name=>string; outgoing=>>Edge;fanOut=>int |; 2
Sink :: Node; FORALL X: Sink[fanOut=>X], X=0. // no successors
Edge :: Thing [Node=>successor |; 4

Graph :: Thing [name=>string ; nodes=>>Node ; edges=>>Edge; sources=>>Node] ;
6
TypedSymmetricGraph = {
Node ::Thing[name=>string;type:string;outgoing=>>Edge; 8
incoming=>>Edge; fanIn=>int ; fanOut=>integer] ;
Source :: Node; FORALL X: Source[fanIn=>X], X=0. // no predecessors 10
Sink :: Node; FORALL X: Sink[fanOut=>X], X=0. // no successors

Edge ::Thing|[type=>string;Node=>successor ;Node=>predecessor]; 12
Graph :: Thing [name=>string ; nodes=>>Node, edges=>>Edge,
sources=>>Node; sinks=>>Node | ; 14

Essentially, mixin layers are hyperslices that group collaborating mixins to-
gether. For ontology engineering, mixin layer composition enables the composi-
tion of partial classes, together with their constraints. Integrity constraints and
production rules can be composed together with mixins and mixin layers, and
they can be parameterized and extended in the same way as seen in the previous
sections.

Mixin layers provide an important type of fragment components for compo-
nent-based ontology engineering. Classes in an ontology, together with their re-
lations, integrity constraints, and production rules, may be composed from con-
sistently defined mixin layers. This composition style is very important for large
ontologies that must be designed in variant spaces, and have sets of collaborat-
ing concepts. Whenever interaction between concepts of an ontology is required,
mixin layer composition is a good means to specify all classes, relationships, and
constraints together. Due to the layering, this improves comprehensibility of the
ontology, because larger ontologies are constructed from smaller building blocks
in a structured way.

Composition of Rule Sets and Ontologies 89

6 Related Work

In contrast to component-based ontology composition, which attempts to con-
struct an ontology from scratch, ontology alignment attempts to integrate legacy
ontology components [45]. Of course, this is a related approach, which is impor-
tant as such, because the world of ontologies will be heterogeneous, evolving,
and legacy-aware. However, universal genericity and universal extension are two
basic principles that will also improve ontology alignment work, as can be seen
from the section on base class extension and mixin composition.

[34] presents an ontology composition algebra ONION that is mainly tailored
to the integration of existing ontologies. It is a set-based algebra, with union,
intersection, difference and selection as basic operations. Hence, merges and ex-
tensions are realized by set union. However, the ONION algebra lacks parame-
terization and extension of hooks. Since it offers merges mainly on concepts, it
is similar to hyperspace programming. On the other hand, ONION offers artic-
ulation rules, which create relationships between concepts in different ontologies
(homonymic mappings).

A second-order logic programming language directly provides the parame-
terizations and extensions of invasive component models, in the form of higher
order functions and clauses. However, full second-order logic programming is un-
decidable. Hence, one could say that the decisive difference of a fragment-based
composition system to a second-order language is that the invasive composition
operations are executed in a stage before the actual system (staged metapro-
gramming) [41]. Hence, a fragment component model relies on staged metapro-
gramming principles.

Lammel’s work on language composition has applied static metaprogramming
to attribute grammars [32]. He uses the A-calculus as a composition language
(with the bind operation), realizes extend operations by function composition,
and is able to compose attribute grammar components. Fragment-based compo-
sition works in this spirit, but can be universally applied to all languages.

7 Conclusions

This paper has explained several techniques that will help the ontology engineer
to define architectures of ontologies, i.e., structures of ontologies in-the-large.
Templates, semantic macros, views, mixin layers allow for structuring concepts,
relationships, and entire ontologies into components, which can be constructed
and comprehended in isolation, but reused in many ontologies. These techniques,
successfully applied in software engineering for programs and system models, will
certainly contribute to the future field of component-based ontology engineering.

Acknowledgment

This research has been co-funded by the European Commission and by the Swiss
Federal Office for Education and Science within the 6th Framework Programme
project REWERSE number 506779 (cf. http://rewerse.net).

90

U. ABmann et al.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

A. Analyti, G. Antoniou, C. V. Damaésio, and G. Wagner. Stable model theory for
extended rdf ontologies. In Int. Semantic Web Conference, pages 21-36, 2005.

G. Antoniou. Nonmonotonic rule systems using ontologies. In Proc. Intl. Workshop
on Rule Markup Languages for Business Rules on the Semantic Web, 2002.

. U. Aimann. Beyond generic component parameters. In CD ’02: Proceedings of

the IFIP/ACM Working Conference on Component Deployment, pages 141-154,
London, UK, 2002. Springer-Verlag.

. U. ABmann. Invasive Software Composition. Springer-Verlag, Feb. 2003.
. S. Barry, J. Williams, and S. Schulze-Kremer. The ontology of the Gene Ontol-

ogy. In AMIA 2003 — Annual Symposium of the American Medical Informatics
Association, 2003.

. S. Boag and D. C. et. al. (editors). XQuery 1.0: An XML Query Language. W3C

Candidate Recommendation 3 November 2005, 3 November 2005. Available at
http://wuw.w3.org/TR/xquery/.

. G. Bracha. The Programming Language Jigsaw: Mizins, Modularity and Multiple

Inheritance. Ph.D. thesis, Dept. of Computer Science, University of Utah, Mar.
1992.

. G. Bracha and W. Cook. Mixin-based inheritance. In N. Meyrowitz, editor, Pro-

ceedings of OOPSLA ECOOP ’90, number 25(10) in ACM SIGPLAN Notices,
pages 303-311. ACM Press, New York, Oct. 1990.

. F. Bry and S. Schaffert. The XML query language Xcerpt: Design principles,

examples, and semantics. In Web and Databases, Proc of the 2nd Int. Workshop,
LNCS2593. Springer Verlag, 2002.

G. Castagna. Covariance and contravariance: Conflict without a cause. ACM
Transactions on Programming Languages and Systems, 17(3):431-447, May 1995.
W. Chen, M. Kifer, and D. S. Warren. HiLog: A Foundation for Higher-Order
Logic Programming. Journal of Logic Programming, 15(3):187-230, Feb. 1993.
M. Cole. Algorithmic Skeletons: Structured Management of Parallel Computation.
Monograms. MIT Press, Cambridge, MA, 1989.

Dan Brickley and R.V. Guha. RDF Vocabulary Description Language 1.0:
RDF Schema. W3C Recommendation, 10 February 2004. Available at
http://www.w3.org/TR/rdf-schema/.

J. Darlington, Y.-K. Guo, H. W. To, and J. Yang. Functional skeletons for parallel
coordination. Lecture Notes in Computer Science, 966:55, 1995.

F. DeRemer and H. Kron. Programming in the Large vs. Programming in the
Small. IEEE Transactions on Software Engineering, 2(2):80-86, June 1976.

D. F. D’Souza and A. C. Wills. Objects, Components and Frameworks with UML:
The Catalysis Approach, chapter 6, page 816. Object Technology Series. Addison-
Wesley, 1st edition, 1998.

J. C. (editor). XSL Transformations (XSLT) Version 1.0. W3C Recommendation
16 November 1999, 16 November 1999. Available at http://www.w3.org/TR/xslt.
T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining answer set
programming with description logics for the semantic web. In Proc. of the Int.
Conference of Knowledge Representation and Reasoning (KR’04), 2004.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison Wesley, Reading, MA, 1994.

20

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

31.

32.

33.

34.

35.

Composition of Rule Sets and Ontologies 91

D. Garlan. Formal modeling and analysis of software architecture: Components,
connectors, and events. In M. Bernardo and P. Inverardi, editors, Formal Methods
for Software Architectures, Third Int. School on Formal Methods for the Design
of Computer, Communication and Software Systems: Software Architectures (SFM
2003), Advanced Lectures, volume 2804 of Lecture Notes in Computer Science,
pages 1-24. Springer, Sept. 2003.

D. Garlan and Z. Wang. Acme-based Software Architecture Interchange. In
P. Ciancarini and A. Wolf, editors, Proc. 3rd Int. Conf. on Coordination Models
and Languages, volume 1594 of Lecture Notes in Computer Science, pages 340-354.
Springer, Heidelberg, Apr. 1999.

Graham Klyne and Jeremy J. Carroll. Resource Description Framework (RDF):
Concepts and Abstract Syntax. W3C Recommendation, 10 February 2004. Avail-
able at http://www.w3.org/TR/rdf-concepts/.

B. Grosof, I. Horrocks, R. Volz, and S. Decker. Description logic programs: Com-
bining logic programs with description logic. In Proceedings of 12th Int. Conference
on the World Wide Web, 2003.

I. Horrocks and P. F. Patel-Schneider. A proposal for an OWL rules language.
In Proc. of the Thirteenth Int. World Wide Web Conference (WWW 2004), pages
723-731. ACM, 2004.

Int. Organization for Standardization. Ada 95 Reference Manual. The Language.
The Standard Libraries, Jan. 1995. ANSI/ISO/IEC-8652:1995.

L. K. J., M. Lofgren, O. Lehrmann Madsen, and B. Magnusson, editors. Object-
Oriented Environments— The Mjoelner Approach. Prentice Hall, New York, 1994.
Jan Maluszynski et. al. Combining Rules and Ontologies. A survey. . Technical re-
port, REWERSE Deliverable, March 2005. http://rewerse.net/deliverables/
m12/i3-d3.pdf.

JavaSoft. Enterprise Java Beans (TM), Apr. 2000. Version 2.0.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and
J. Irwin. Aspect-oriented programming. In Proceedings of the Furopean Conference
on Object-Oriented Programming (ECOOP 97), volume 1241 of Lecture Notes in
Computer Science, pages 220—242. Springer, Heidelberg, 1997.

M. Kifer. Rules and ontologies in F-logic. In N. Eisinger and J. Maluszynski,
editors, Reasoning Web, First Int. Summer School 2005, Msida, Malta, July 25-
29, 2005, Tutorial Lectures, volume 3564 of Lecture Notes in Computer Science,
pages 22-34. Springer, 2005.

S. Krishnamurthi, M. Felleisen, and B. F. Duba. From Macros to Reusable Gen-
erative Programming. In U. W. Eisenecker and K. Czarnecki, editors, Generative
Component-based Software Engineering (GCSE), number 1799 in Lecture Notes in
Computer Science. Springer, Heidelberg, Oct. 1999.

R. Lammel. Functional Meta-Programs — Towards Reusability in the Declarative
Paradigm. PhD thesis, Universitat Rostock, 1999.

O. Lehrmann Madsen, B. Méller-Pedersen, and K. Nygaard. Object-Oriented Pro-
gramming in the BETA Programming Language. Addison Wesley, Reading, MA,
1993.

P. Mitra and G. Wiederhold. An ontology-composition algebra. In S. Staab and
R. Studer, editors, Handbook on Ontologies, Int. Handbooks on Information Sys-
tems, pages 93—116. Springer, 2004.

D. A. Moon. Object-oriented programming with flavours. In Proceedings of OOP-
SLA’86, number 21(11) in ACM SIGPLAN Notices, pages 1-8. ACM Press, New
York, Oct. 1986.

92

36

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

U. ABmann et al.

B. Motik, U. Sattler, and R. Studer. Query Answering for OWL-DL with Rules.
J. of Web Semantics, 3:41-60, 2005.

D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 15(12):1053-1058, Dec. 1972.

P. F. Patel-Schneider, P. Hayes, and I. Horrocks. OWL web ontology language se-
mantics and abstract syntax. W3C Recommendation, 10 February 2004. Available
at http://www.w3.org/TR/owl-semantics/.

A. L. Rector, C. Wroe, J. Rogers, and A. Roberts. Untangling taxonomies and
relationships: personal and practical problems in loosely coupled development of
large ontologies. In K-CAP, pages 139-146. ACM, 2001.

R. Rosati. Semantic and computational advantages of the safe integration of on-
tologies and rules. In F. Fages and S. Soliman, editors, Principles and Practice of
Semantic Web Reasoning, LNCS3703, pages 50—-64. Springer Verlag, 2005.

T. Sheard. Using MetaML: A staged programming language. Number 1608 in
Lecture Notes in Computer Science, pages 207—239. Springer, Heidelberg, 1999.
J. Siegel. OMG overview: CORBA and the OMA in enterprise computing. Com-
munications of the ACM, 41(10):37-43, Oct. 1998.

Y. Smaragdakis and D. Batory. Implementing layered designs with mixin layers.
volume 1445, page 550. Springer, Heidelberg, 1998.

Y. Smaragdakis and D. Batory. Mixin layers: an object-oriented implementation
technique for refinements and collaboration-based designs. ACM Transactions on
Software Engineering and Methodology, 11(2):215-255, 2002.

M. K. Smith, C. Welty, and D. L. McGuinness. OWL web ontology language guide.
Technical report, W3C Recommendation, Feb. 2004. http://www.w3.org/TR/owl-
guide.

C. Szyperski. Component Software: Beyond Object-Oriented Programming.
Addison-Wesley, New York, 1998.

P. Tarr, H. Ossher, W. Harrison, and S. Sutton. N degrees of separation: Multi-
dimensional separation of concerns. In Proceedings of ICSE’99, pages 107-119, Los
Angeles CA, USA, 1999.

P. L. Tarr and H. Ossher. Hyper/J*™: Multi-dimensional separation of concerns
for javaT™ . In ICSE, pages 729-730. IEEE Computer Society, 2001.

Y. Tzitzikas, N. Spyratos, P. Constantopoulos, and A. Analyti. Extended faceted
ontologies. Lecture Notes in Computer Science, 2348:778, 2002.

Reasoning with Rules and Ontologies™

Thomas Eiter!, Giovambattista Ianni®, Axel Polleres2,
Roman Schindlauer', and Hans Tompits'

! Institut fiir Informationssysteme, Technische Universitit Wien
Favoritenstra3e 9-11, A-1040 Vienna, Austria
{eiter, ianni, roman, tompits}@kr.tuwien.ac.at
2 Universidad Rey Juan Carlos, 28933 Mdstoles, Spain
axel@polleres.net

Abstract. For realizing the Semantic Web vision, extensive work is underway
for getting the layers of its conceived architecture ready. Given that the Ontol-
ogy Layer has reached a certain level of maturity with W3C recommendations
such as RDF and the OWL Web Ontology Language, current interest focuses on
the Rules Layer and its integration with the Ontology Layer. Several proposals
have been made for solving this problem, which does not have a straightforward
solution due to various obstacles. One of them is the fact that evaluation prin-
ciples like the closed-world assumption, which is common in rule languages,
are usually not adopted in ontologies. Furthermore, naively adding rules to on-
tologies raises undecidability issues. In this paper, after giving a brief overview
about the current state of the Semantic-Web stack and its components, we will
discuss nonmonotonic logic programs under the answer-set semantics as a pos-
sible formalism of choice for realizing the Rules Layer. We will briefly discuss
open issues in combining rules and ontologies, and survey some existing pro-
posals to facilitate reasoning with rules and ontologies. We will then focus on
description-logic programs (or dl-programs, for short), which realize a transpar-
ent integration of rules and ontologies supported by existing reasoning engines,
based on the answer-set semantics. We will further discuss a generalization of dl-
programs, viz. HEX-programs, which offer access to different ontologies as well
as higher-order language constructs.

1 Introduction

For the realization of the Semantic Web, the integration of different layers of its con-
ceived architecture is a fundamental issue. In particular, the integration of rules and
ontologies is currently under investigation, and many proposals in this direction have
been made. They range from homogeneous approaches, in which rules and ontologies
are combined in the same logical language (e.g., in SWRL and DLP [31,24]), to hybrid
approaches in which the predicates of the rules and the ontology are distinguished and
suitable interfacing between them is facilitated, like, e.g., [18,14,59,30] (see [4] for a

* This research has been partially supported by the European Commission within the FP6 project
REWERSE (IST 506779, http://rewerse.net), by the Austrian Science Fund (FWF)
project P17212-N04, and by the CICyT of Spain project TIC-2003-9001-C02.

P. Barahona et al. (Eds.): Reasoning Web 2006, LNCS 4126, pp. 93-127, 2006.
(© Springer-Verlag Berlin Heidelberg 2006

94 T. Eiter et al.

survey about such approaches). While the former approaches provide a seamless se-
mantic integration of rules and ontologies, they suffer from problems concerning either
limited expressiveness or undecidability, because of the interaction between rules and
ontologies. Furthermore, they are not (or only to a limited extent) capable of dealing
with ontologies having different formats and semantics (like, e.g., RDF Schema and
OWL DL, which have some semantic incompatibilities) at the same time. This can be
handled, in a fully transparent way, by approaches which keep rules and ontologies
separate. Here, ontologies are treated as external sources of information, which are ac-
cessed by rules that also may provide input to the ontologies. In view of well-defined
interfaces, the precise semantic definition of ontologies and their actual structure does
not need to be known. This in particular facilitates ontology access as a Web service,
where also privacy issues might be involved (e.g., a customer taxonomy in a financial
domain).

In this paper, we shall consider reasoning with rules and ontologies from the answer-
set programming (ASP) [6] perspective. The latter is nowadays a general term for a
powerful knowledge representation (KR) and declarative programming paradigm which
includes many language features from nonmonotonic logics, as well as support for
reasoning with constraints and preferences. ASP has recently been used as a reliable
specification tool in a number of promising applications. For instance, several tasks in
information integration, knowledge management, security management, and configura-
tion, which require complex reasoning capabilities, have been successfully tackled us-
ing ASP. In particular, these applications have been explored in several recent projects
funded by the European Commission (e.g., the projects WASP [61], INFOMIX [35],
and ICONS [33]).

Some attractive benefits of ASP are summarized as follows:

— Full declarativity: ASP is fully declarative. The order of rules and atoms in a logic
program is not important, and, in general, no knowledge of the operational seman-
tics a specific solver adopts is required.

— Decidability: ASP programs are, in their basic flavor, decidable. No special restric-
tions are needed in order to keep this important property.

— Support of nonmonotonicity: ASP supports strong negation as well as negation as
failure. The latter facilitates default reasoning and nonmonotonic inheritance.

— Nondeterminism: Concepts may be defined which “range” over a space of choices
without any particular restriction. Combined with extensions for preferences and
different kinds of constraints, this enables a compact specification of search and
optimization problems.

— Scalability: Despite the computational expressiveness of ASP, current state-of-the-
art solvers, such as DLV [36], GnT [34], or Cmodels-3 [38], have reached a level
of maturity which allows them to deal even with large datasets.

We refer to [60] for a repository of ASP solvers, and to [63] for a comprehensive
report on recent ASP applications; a showcase collection is available online at

http://www.kr.tuwien.ac.at/projects/WASP/showcase.html.

In the Semantic Web perspective, significant efforts have been made to highlight
the benefits of ASP for the Rules Layer of the Semantic Web architecture and its

Reasoning with Rules and Ontologies 95

| Ontologies (OWL) H Rules |

‘ RDFS |

RDF Core

XML

Fig. 1. Ontology and rule languages in the Semantic-Web layer cake

interactions with the Ontology Layer. A variety of upcoming applications supports
adopting ASP as a formalism for realizing the Rules Layer. The inherent nondeter-
minism and the possibility to enrich the semantics with weak (i.e., soft) constraints
make ASP a well-suited candidate for applications like Web-service matchmaking and
ontology alignment [58]. It is worth mentioning that an ASP application for Web-
service composition [49] earned first prize in the EEE Web-Service Composition Con-
test [13].

The remainder of this paper is organized as follows. The next section contains pre-
liminaries on the relevant parts of the Semantic Web architecture, and Section 3 intro-
duces ASP. In Section 4, we point out issues in combining rules and ontologies, and
briefly survey approaches in this direction. After that, Section 5 presents nonmonotonic
description-logic programs (or dl-programs, for short) as an example of an approach
for combining rules and ontologies. The subsequent Section 6 presents an extension of
this approach towards an integration of rules and general external software, in which
the usage of higher-order predicates is facilitated. Finally, Section 7 provides a short
discussion and concludes the paper.

In order to have a cohesive flow and to illustrate the different ASP extensions, we in-
troduce an example in a storyboard-like fashion, which will serve as a running example
throughout the paper.

2 Ontology Formalisms

Rules and ontologies represent two main components in the Semantic-Web vision which
are expected to tightly interplay for making this vision a reality. In order to illustrate
a plausible scenario where rules and ontologies interact, we will incrementally build a
simple, yet conceivable, example.

Example 1 (Motivating Example, Part I). The Reasoning-Web Summer School is plan-
ning the organization of its social dinner. In order to make the attendees happy with this
event and to make them familiar with ontologies, they decide to ask them to declare their
preferences about wines, in terms of a class description reusing the (in)famous Wine
Ontology [62]. The organizers realize that only one kind of wine would not achieve the
goal of fulfilling all the attendees’ preferences. Thus, they aim at automatically finding
the cheapest selection of bottles such that any attendee can have his or her preferred
wine at the dinner.

96 T. Eiter et al.

The organizers quickly realize that several building blocks are needed to accomplish
this task. First of all, a good formalism to express the domain of interest (involving
wines, their properties, and bottles) is needed. So they search among the currently avail-
able technologies and return with a strange brew of acronyms such as RDF, RDFS, and
OWL. O

The realization of reasoning with rules and ontologies affects basically four components
of the so-called “Semantic-Web layer cake” [7]: RDF, RDFS, the Ontology Layer, and
the Rules Layer. A slightly simplified version of this relevant part of the architecture
proposal for the Semantic Web is shown in Fig. 1.

Layered on top of standards which mainly serve to provide common syntax for in-
formation exchange on the Web, the Resource Description Framework (RDF) [57,27]
provides a common flexible data model for the Semantic Web. Based on arbitrary
labeled graphs, RDF does not enforce a particular data schema upfront. Next, RDF
Schema (RDFS) provides facilities to define simple taxonomies among concepts and
relations.

While RDFS as such could already be viewed as a simple ontology language, in
order to provide more expressiveness for describing formal conceptualizations, the On-
tology Layer was introduced and is realized by means of the OWL Web Ontology
Language [11], which can be seen as a syntactic variant of an expressive description
logic.

As we already see in Fig. 1, the “Semantic-Web layer cake” is in fact not strictly lay-
ered, since rules and ontologies appear side by side. Whereas RDF, RDFS, and OWL
have already achieved an acceptable level of maturity as W3C recommendations, it is
not yet completely clear where and how to fit in rules, possibly involving nonmono-
tonicity, preferences, or other expressive features. Defining a proper standard for in-
tegrating the plethora of rules languages around is yet to be investigated by W3C’s
recently established Rule Interchange Format (RIF) working group.’

A natural choice of rule languages relevant for the integration of rules and ontologies
are those originating from logic programming and nonmonotonic reasoning, in particu-
lar languages which are based on the answer-set programming paradigm (cf., e.g., [6]),
on which we focus here. The latter paradigm is a purely declarative problem-solving
formalism which gained increasing momentum in the knowledge-representation com-
munity over the last decade.

Before introducing this paradigm in more detail though, we briefly recapitulate
the established building blocks RDF(S) and OWL, and discuss their formal under-
pinnings.

2.1 RDF(S)

The Resource Description Framework (RDF) defines the data model for the Semantic
Web. Driven by the goal of a least possible commitment to a particular data schema,
the simplest possible structure for representing information was chosen in RDF, a la-
beled graph. An RDF graph can be viewed as a set of its directed edges, commonly
represented by triples of form (Subject Predicate Object), also called statements.

3 of. http://www.w3 .0rg/2005/rules/wg/charter.

Reasoning with Rules and Ontologies 97

<rdf :RDF
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:foaf="http://xmlns.com/foaf/0.1/">

<rdf:Description rdf:about="http://polleres.net/foaf.rdf#me">
Tip//polieres.nel) [vorPoteres | <foaf:knows rdf:nodeID="x"/>
foal rdff#me foat:name —f Axel Polleres <foaf:knows rdf:nodeID="y"/>
foaf:knows foaf:knows <foaf:name>Axel Polleres</foaf:name>
</rdf:Description>

<rdf:Description rdf:nodeID="a">
foaf:name foaf:name <foaf:name>Roman Schindlauer</foaf:name>

| | A
[Giovambatista lanni | [Roman Schindlauer | </rdf:Description>

<rdf:Description rdf:nodeID="b">
<foaf:name>Giovambattista Ianni</foaf:name>
</rdf:Description>

</rdf :RDF>

!

3z 3y .triple(me, foaf:knows, x)
Atriple(me, foaf:knows,)
— Atriple(me, foaf:name, “AzelPolleres’’)
Atriple(z, foaf:name, “RomanSchindlauer’")
Atriple(y, foaf:name, “Gznvanw,battistu,]a,nm")

<http://polleres.net/foaf.rdf#me> foaf:knows _:ja .
<http://polleres.net/foaf.rdf#me> foaf:knows _:3b .
<http://polleres.net/foaf.rdf#me> foaf:name

"Axel Polleres".
_:jx foaf:name "Roman Schindlauer" .
_:jy foaf:name "Giovambattista Ianni" .

Fig. 2. Different representations of RDF

Predicates, also referred to as properties in RDF terminology, denote the labels, and
link a resource, identified by a URI, with another resource, datatype literal, or XML
literal.

Moreover, RDF graphs may contain anonymous (“blank”) nodes, in order to express
incomplete information or queries. Fig. 2 shows an example demonstrating three com-
mon notions for RDF graphs: RDF/XML syntax, N-Triples, and representing an RDF
graph as a closed first-order formula where blank nodes are conceived as existentially
quantified variables. We use the ternary predicate ¢triple to represent RDF statements:
Alternative representations, like representing triples (S P O) by P(S, O), have some
disadvantage for RDF, as we will see below.

This graphs contains the following information: The resource

“http://polleres.net/foaf.rdf#me”

s

with the name “Axel Polleres” knows someone named “Giovambattista Ianni” and
someone named ‘“Roman Schindlauer”. Terms like foaf:knows are shortcuts for full
URIs like http://xmlns.com/foaf/0.1/knows,” ie., using so-called name-
space prefixes from XML, for ease of legibility.

Moreover, basic RDF defines a special property rdf:type, which allows the specifica-
tion of “is-a” relations, such as, for instance,

(http://polleres.net/foaf .rdf#me rdf:type foaf:Person).

RDF supports two basic types, viz. rdf:Property and rdf:XMLLiteral, and a basic set of
XML schema datatypes.

* This represents typical information which you might find in a so-called FOAF descrip-
tion, an RDF vocabulary for expressing personal information with growing popularity, see
http://www. foaf-project.org/.

98 T. Eiter et al.

Table 1. Semantics of RDFS

VS, P, O.(triple(S, P, O
VS, P, O.(triple(S, P,O
VS, P, O.(triple(S, P,O) D triple(O, rdf:type, rdfs:Resource)) ,
VS, P, O.(triple(S, P, O), triple(P, rdfs:domain, C)) D triple(S, rdf:type, C)),
VS, P,O, C.(triple(S, P,O) A triple(P, rdfs:range, C) D triple(O, rdf:type, C)),
VC.(triple(C, rdf:type, rdfs:Class) D triple(C, rdfs:subClassOf, rdfs:Resource) ,
VC1, Cs, Cs.((triple(Ch, rdfs:subClassOf, C2) A

triple(Ca, rdfs:subClassOf, C3)) D triple(Ch, rdfs:subClassOf, Cs) ,
VS, C1, Ca.((triple(S, rdf:type, C1) A

triple(Ch, rdfs:subClassOf, C2)) D triple(S, rdf:type, C2)),

VS, C.(triple(S, rdf:type, C) D triple(C, rdf:type, rdfs:Class) ,
VC.(triple(C, rdf:type, rdfs:Class) D triple(C, rdfs:subClassOf, C) ,
YV Py, P2, P3.((triple(P, rdfs:subPropertyOf, P>) A

triple(Pz, rdfs:subPropertyOf, P3)) D triple(Py, rdfs:subPropertyOf, Ps)),
VS, P1, P2, O.(triple(S, Pi, O) A triple(P, rdfs:subPropertyOf, P») D triple(S, P2, 0)),
VP.(triple(P, rdf:type, rdf:Property) O triple(P, rdfs:subPropertyOf, P))

D triple(P, rdf:type, rdf:Property)) ,
D triple(S, rdf:type, rdfs:Resource)) ,

—_ — — —

The semantics of RDF can be essentially viewed as corresponding to the first-order
representation chosen in Fig. 2 plus entailment of several axiomatic triples, such as that
the triple (X rdf:type rdf:Property) is an axiom for all X which occur in the predicate
position of any other triple. In particular, this also makes, for instance, { rdf:type rdf:type
rdf:Property) an axiom.

The semantics of RDF involves some more peculiarities in the handling of XML
literals, RDF containers, and lists. Most remarkably, it should be noted that the RDF
vocabulary contains an infinite number of predefined properties rdf: 1, rdf: 2, ... for
container membership, and thus gives rise to an infinite number of axiomatic triples
(rdf: 1 rdf:type rdf:Property), We refer the interested reader to [27] for details.

RDF Schema (RDFS) is a semantic extension of basic RDF essentially by giving
special meaning to the properties rdfs:subClassOf and rdfs:subPropertyOf, as well as to
several types (like rdfs:Class, rdfs:Resource, rdfs:Literal, rdfs:Datatype etc.), in order to
express simple taxonomies and hierarchies among properties and resources.

The semantics of RDFS can to a large extent be approximated by a set of sentences of
first-order logic (FOL), reusing the notion from above (see Table 1)° plus the axiomatic
triples from [27, Sections 3.1 and 4.1]. Note that our choice of using a ternary predicate
triple in favor of a binary representation helped us to avoid higher-order-like rules such
as VS, P,O. P(S,0) D rdf:type (P,rdf:Property) in this axiomatization. Again, we do

> We use "D’ for material implication to avoid confusion with >« as commonly used in logic
programming.

Reasoning with Rules and Ontologies 99

Table 2. Expressing OWL DL Property axioms to DL and FOL

OWL property axioms as RDF Triples DL syntax FOL short representation

(P rdfs:domain C) TCVP™.C Vz,y:P(z,y) D C(x)

(P rdfs:range C') T CEVP.C Vr,y: P(z,y) D C(y)

(P owl:inverseOf Py) P =P, Vz,y : P(z,y) = Po(y,x)

(P rdf:type owl:SymmetricProperty) P =P Vz,y: P(z,y) = P(y,z)

(P rdf:type owl:FunctionalProperty) TCEL 1P Vz,y1,y2 : P(z,y1) A P(z,y2) D y1 =vy2
(P rdf:type owl:InverseFunctionalProperty) T C< 1P~ Vai,z2,y : P(z1,y) A P(z2,y) D z1=x2
(P rdf:type owl:TransitiveProperty) ptCP Va,y,z: P(x,y) AN P(y,z) D P(x, z)

not elaborate upon peculiarities and additional rules or axioms in the context of RDF
containers and XML literals here.

2.2 Description Logics and the OWL Web Ontology Language

The next layer in the Semantic-Web stack serves to formally define shared conceptu-
alizations, i.e., ontologies [25], on top of the RDF/RDFS data model. In order to for-
mally specify such domain models, the W3C has chosen a language which is close to
a syntactic variant of an expressive but still decidable description logic (DL), namely
SHOIN (D). More precisely, the OWL DL variant coincides with this description
logic, at the cost of imposing several restrictions on the usage of RDF(S). These re-
strictions (e.g., disallowing that a resource is used both as a class and an instance) are
lifted in OWL Full which combines the description logic flavor of OWL DL and the
syntactic freedom of RDF(S). For an in-depth discussion of the peculiarities of OWL
Full, we refer the interested reader to the language specification [11] and restrict our
observations to OWL DL here.

While RDFS itself may already be viewed as a simple ontology language, OWL
adds several features beyond the simple definition of hierarchies (rdfs:subPropertyOf,
rdfs:subClassOf) to define relations between properties and classes.

As for properties, OWL allows to specify transitive, symmetric, functional, inverse
functional, and inverse properties. The correspondences of respective OWL properties
and classes with description logics and first-order logic axioms expressible in OWL can
be found in Table 2. Note that we switch to the binary representation P (.S, O) of triples
here, since in description logics (and thus in OWL DL), predicate names and resources
are assumed to be disjoint.

Moreover, OWL allows the specifications of complex class descriptions to be used
in rdfs:subClassOf statements. Complex descriptions may involve class definitions in
terms of union or intersection of other classes, as well as restrictions on properties. Ta-
ble 3 gives an overview of the expressive possibilities of OWL for class descriptions and
its semantic correspondences with description logics and first-order logics.® Such class
descriptions can be related to each other using rdfs:subClassOf, owl:equivalentClass, or
owl:disjointWith keywords, which allow us to express description-logic axioms of the
form C; C Cy, C; = Cy, or C; M Cy C L, respectively, in OWL.

% We use a simplified notion for the first-order logic translation here—actually, the translation
needs to be applied recursively for any complex description-logic term. For a formal spec-
ification of the correspondence between description-logic expressions and first-order logic,
cf. [5].

100 T. Eiter et al.

Table 3. Mapping of OWL DL Complex Class Descriptions to DL and FOL

OWL complex class descriptions ™ DL syntax FOL short representation

owl:Thing T =z

owl:Nothing 1 =z

owl:intersectionOf (C7 ... C},) cin...nC, A Ci(z)

owl:unionOf (Cy ... Cy) Ciu...uC, VCi(z)

owl:complementOf (C) -C -C(z)

owl:oneOf (o1 ...0n) {o1...0n} Va=o;

owl:restriction (P owl:someValuesFrom (C)) 3P.C Jy.P(z,y) N C(y)

owl:restriction (P owl:allValuesFrom (C)) VP.C Vy.P(z,y) D C(y)

owl:restriction (P owl:value (o)) JP.{o} P(z,0)

owl:restriction (P owl:minCardinality (n)) >nP Fiyi- Ny P(2,y5) AN vi Y5
owl:restriction (P owl:maxCardinality (n)) < nP V?:*'llyi.(/\ o1 Pz, yi) DV, v =y;)

*For reasons of legibility, we use a variant of the OWL abstract syntax [47] in this table.

Finally, OWL allows to express explicit equality or inequality relations between in-
dividuals by means of the owl:sameAs and owl:differentFrom properties, e.g., the triples

(http://www.polleres.net/foaf.rdf#me owl:sameAs
http://polleres.net/foaf.rdf#me) and

(http://polleres.net/foaf . rdf#me owldifferentFrom
http://www.gibbi.com/foaf.rdf#me)

boil down to

http://www.polleres.net/foaf.rdf#me=http://polleres.net/
foaf.rdf#me Ahttp://polleres.net/foaf.rdf#me #
http://www.gibbi.com/foaf.rdf#me.

For details on the description logics notion used in the Tables 2 and 3, we refer the
interested reader to, e.g., [5]. For our purposes, basic understanding of the correspond-
ing definitions in term of first-order logic will be sufficient. What makes description
logics the formalism of choice is the fact that it defines a decidable fragment of first-
order logic, i.e., queries for entailment of subclass relationships or class membership of
a particular individual are effectively computable.

Example 2 (Ontologies in Description Logics). Taking the wine ontology from [62], let
us illustrate some of the conceptualizations therein in their corresponding description-
logics syntax:

Wine C PotableLiquidM = 1LhasMaker MYhasMaker. Winery;
Wine C> 1madeFromGrapen = 1hasFlavor;
VhasColor™ T T {“White”,“Rose”,“Red”};
WhiteWine = Wine N YhasColor.{“ White}.

This knowledge base expresses the following information: A wine is a potable liquid,
having exactly one maker, who is a member of the class Winery. Moreover, wines are
made from at least one sort of grapes and have exactly one of the flavors, and one of
the colors “White”, “Rose”, and “Red”. A White Wine is a wine with color “ White”.
Finally, Welschriesling is an instance of White Wine. O

Reasoning with Rules and Ontologies 101

3 Answer-Set Programming

After having introduced some foundations of the Semantic Web in terms of a data model
(RDF) and ontology languages (RDFS and OWL), let us now turn to logic programs as
a way to realize the Semantic-Web Rules Layer. For illustration purposes, consider the
following continuation of our running example:

Example 3 (Motivating Example, Part II). As soon as the wine domain is described,
the social-dinner organizers now have to face the problem of quickly modeling rules
that describe a set of bottles that are suitable for all the participants, and to express the
choice criteria among these candidate sets. They realize soon that domain-description
languages accomplished their job well, but now they need some different tool: First,
how to express possible choices of bottles? How to determine the set of attendees (say,
the class nonSatisfied) that are not assigned a compliant bottle? Unfortunately, un-
der an open-world assumption, no attendee can be entailed as belonging to this class.
Moreover, is it possible to exclude the situations where nonSatisfied is non-empty, and
where the price of this selection of bottles is possibly minimal?

They conclude that a rule-based formalism with disjunction and nonmonotonic fea-
tures would be the most appropriate formalism, and, among others, choose to investigate
on the characteristics of ASP (answer-set programming). a

Answer-set programming has its roots in the seminal work by Gelfond and Lifschitz
[22], who presented a semantics for logic programs with negation as failure and strong
negation, where multiple answer sets (or stable models) may be ascribed to a pro-
gram. This inherent nondeterminism can be exploited to represent different solutions
to a problem in the answer sets of a logic program, as fostered, e.g., in [39,42,44].

3.1 Syntax

Let @ be a first-order vocabulary with nonempty finite sets of constant and predicate
symbols, but no function symbols.” Let X be a set of variables. A term is either a
variable from X or a constant symbol from ®. An atom is an expression of the form
p(t1,...,tn), where p is a predicate symbol of arity n > 0 from @, and ¢4, ..., t, are
terms. A literal [is either an atom or an expression of form —p, where “—" denotes
strong negation and p is an atom. The complementary literal —l of [is —p if | = p
and p if | = —p. A negation-as-failure literal (or NAF-literal) is either a literal or an
expression of form not [, where “not” denotes negation as failure, or default negation,
and [is a literal. A disjunctive rule (or simply a rule) r is an expression of the form

al\/---\/az<—b1,-~-abk7”0tbk+1v~--an0tbw (1)

where [> 0, m > k > 0, and all a; and b; are literals. The disjunction a; V --- V q
is the head of r, while the conjunction b1, . .., bg, not bii1,. .., not by, is the body of
r, where b1, ..., by (resp., not bg11, ..., notby,) is the positive (resp., negative) body

7 Gelfond and Lifschitz allowed function symbols and inconsistent answer sets in their seminal
paper [22]. Current ASP solvers have limited support of function symbols, while inconsistent
answer sets are not allowed as valid answers.

102 T. Eiter et al.

of r. We use H (r) to denote the set of all head literals {aq,...,a;} of r, and B(r) to
denote the set of all body literals B*(r) U B~ (r) of 7, where BY(r) = {b1,...,bx}
and B~ (r) = {bx+1, ---,bm}

A disjunctive program (or simply program) P is a finite set of (disjunctive) rules.

If the body of a rule r is empty (i.e., if B(r) = 0), then r is a fact, and we often omit
“—" in such a case. A rule is positive if B~ (r) = (0, and normal if the head of r is a
literal. Similarly, a program is positive resp. normal, if each rule in it is positive resp.
normal. A rule without head literals is an (integrity) constraint.

Example 4 (Simple Wine Program). The following program is a simplistic representa-
tion of a part of the wine scenario described previously, in which a plain ontology is
natively represented within the logic program.

% A suite of wine bottles and their kinds
wineBottle(“SelaksIce Wine”); isA(“SelaksIce Wine”, “white Wine”);
isA(“SelaksIce Wine”, “sweet Wine”);
wineBottle(“CheninBlanc™); isA(“CheninBlanc”, “white Wine”);
isA(“CheninBlanc”,“dryWine”);
wineBottle(“Chardonnay™); isA(“Chardonnay”, “white Wine”);
isA(“ Chardonnay”, “dry Wine”);
wineBottle(“ChiantiClassico™); isA(“ ChiantiClassico”, “red Wine”);
isA(“ChiantiClassico”, “dryWine”);
wineBottle(“ TaylorPort”); isA(“ TaylorPort”, “red Wine”);
isA(“ TaylorPort”, “sweet Wine”).

% Persons and their preferences

person(“azel”); preferredWine(“azel”, “white Wine”);
person(“gibbi”); preferred Wine(“gibbi”, “red Wine”);
person(“roman”); preferredWine(“roman”, “dryWine”).

% Available bottles a person likes
compliantBottle(X, Z) «— preferredWine(X,Y),isA(Z,Y).
The last rule describes bottles which are compliant with a person’s preference. O

Let us now consider a more elaborate version of this program.

Example 5 (Wine Program II). Compared to Example 4, we add the following rules:
doesNotLike(X, Z) «— person(X), wineBottle(Z), not compliantBottle(X, Z).

9 This rule generates multiple answer sets
bottleChosen(X) V —bottleChosen(X) < compliantBottle(Y, X).

% Ensure that each person gets a bottle
hasBottleChosen(X) « bottleChosen(Z), compliantBottle(X, Z);
— person(X), not hasBottleChosen (X).

The first rule concludes that somebody does not like wine bottles which do no com-
ply with the personal desires. The second rule generates different worlds: ones in which

Reasoning with Rules and Ontologies 103

a given bottle is chosen and others in which it is not. The third rule, together with the
constraint, prunes all worlds (under closed-world assumption, CWA) in which some
person has no bottle chosen.
Moreover, note that the second rule (the “choice” rule) may be equivalently replaced
with
—bottleChosen(X) < not bottleChosen(X), compliantBottle(Y, X);
bottleChosen(X) < not — bottleChosen(X), compliantBottle(Y, X).

Under the answer-set semantics (introduced next), this pair of rules enforces that either
bottleChosen(X) or —bottleChosen(X) is included in an answer set (but not both),
providing it contains compliantBottle(Y, X). O

3.2 Semantics

The Herbrand universe of a program P, denoted HUp, is the set of all constant symbols
appearing in P. If there is no such constant symbol, then HUp = {c}, where ¢ is an
arbitrary constant symbol from ®. As usual, terms, atoms, literals, rules, programs, etc.
are ground iff they do not contain any variables. The Herbrand base of a program P,
denoted HBp, is the set of all ground (classical) literals that can be constructed from
the predicate symbols appearing in P and the constant symbols in HUp. A ground
instance of a rule r € P is obtained from r by replacing every variable that occurs in
r by a constant symbol from HUp. We use ground(P) to denote the set of all ground
instances of rules in P.

A set of literals X C HBp is consistent iff {p, —p} Z X for every atom p € HBp.
An interpretation I relative to a program P is a consistent subset of HBp. A model of a
positive program P is an interpretation I C HBp such that B(r) C I implies H (r)NI #
(), for every r € ground(P). An answer set of a positive program P is a minimal model
of P with respect to set inclusion. In particular, if P is positive and does not involve
disjunction, then there exists a single answer set (if one exists).

Example 6 (Simple Wine Program, continued). Our simple wine program does not con-
tain disjunction. Its Herbrand universe is

HUp={“Selakslce Wine”, “CheninBlanc”, “Chardonnay”, “ ChiantiClassico”
b b b b
“TaylorPort”, “white Wine”, “red Wine”, “sweet Wine”, “dry Wine”,
“axel”,“gibbi”, “roman”

and its single answer set consists of all the facts of the program, together with the
following items:

compliantBottle(“axel”, “SelaksIce Wine”);

113

(
compliantBottle(“axel”, “ CheninBlanc”);
compliantBottle(“axel”, “Chardonnay”);
compliantBottle(“gibbi”, “ ChiantiClassico™);
compliantBottle (“gibbi”, “ TaylorPort”);
compliantBottle(“roman”, “ CheninBlanc”);
compliantBottle(“roman”, “ Chardonnay”);

(

compliantBottle(“roman”, “ ChiantiClassico”).

104 T. Eiter et al.

The Gelfond-Lifschitz reduct [22] of a program P relative to an interpretation I C
HB p, denoted P, is the ground positive program that is obtained from ground(P) by

(i) deleting every rule r such that B~ (r) NI # (), and
(i1) deleting the negative body from every remaining rule.

An answer set of a program P is an interpretation / C HB p such that I is an answer
set of P1.

Note that, for positive P, P! = ground(P), and thus the answer sets of P are its
minimal models, as we recall from above. This applies to the program in Example 4.

Example 7 (Wine Program II, continued). Let us extend the answer set of the program
in Example 4 by the atoms

doesNotLike(“azel”, “ ChiantiClassico”), doesNotLike(“azxel”, “ TaylorPort”),
doesNotLike(“gibbi”, “Selakslce Wine”), doesNotLike (“gibbi”, “ CheninBlanc”),
doesNotLike(“gibbi”, “ Chardonnay”), doesNotLike(“roman”, “SelaksIce Wine”),
doesNotLike(“roman”, “ TaylorPort”), —bottleChosen(“SelaksIce Wine”),
—bottleChosen(* CheninBlanc”), bottle Chosen(“ Chardonnay”),

bottle Chosen(“ ChiantiClassico”), —bottle Chosen(“ TaylorPort”),
hasBottleChosen (“azel”), hasBottleChosen (“roman”),

hasBottleChosen (“gibbi”),

and let I be the resulting interpretation. Then, the program P’ contains all ground
instances of positive rules on HU p, plus the rules (originally containing negation in P)

doesNotLike(c,c') «— person(c), wineBottle(c'),
where (¢, ¢’) is from the set

{(“azel”,“ ChiantiClassico”), (“azel”,“ TaylorPort™), (“gibbi”, “SelaksIce Wine™),
(“gibbi”, “ CheninBlanc™), (“gibbi”, “ Chardonnay”), (“roman”, “ TaylorPort”),
(“roman”, “SelaksIce Wine”)}.

As easily checked, I satisfies all rules in P!, and moreover is a minimal model of P’.
Therefore, I is an answer set of P. However, other answer sets do exist. O

3.3 Reasoning Tasks

The main reasoning tasks associated with programs under the answer-set semantics are
the following:

— decide whether a given program P has an answer set;

— given a program P and ground literals 4, ..., ,, decide whether [4, ..., [, simul-
taneously hold in every (resp., some) answer set of P (this is known as cautious
resp. brave reasoning);

— given a program P and nonground literals [y, ..., [, over variables X, ..., Xk,
list all assignments v of values to X7, ..., X such that [yv, ..., [,V is cautiously
(resp., bravely) true (query answering); and

— compute the set of all answer sets of a given program P.

Reasoning with Rules and Ontologies 105

Example 8 (Simple Wine Program, continued). In our simple wine program, we have
a single answer set, and thus cautious and brave reasoning coincides. For instance,
compliantBottle(“axel”, “SelaksIce Wine”) is both a cautious as well as a brave con-
sequence of the program. For the query person(X), we obtain the answers “azel”,
“gibbi”, and “roman’. O

Example 9 (Wine Program II, continued). The more elaborated wine program has 20
answer sets, corresponding to the possibilities whether a bottle is being chosen or
not. The cautious query bottleChosen (“SelaksIce Wine”) fails, while the brave query
bottleChosen(“Selakslce Wine”) succeeds. For the query bottleChosen(X), we ob-
tain no answer under cautious reasoning. O

The basic ASP language, as introduced above, has been extended in the literature with
many features like weak constraints [8], aggregates [20] (as familiar from database
query languages), or cardinality and weight constraints [45]. The fruitful combina-
tion of these features allowed ASP to become an important knowledge-representation
formalism for declaratively solving Al problems.

Example 10 (Wine Program III). Suppose we want to single out situations in which a
smallest number of bottles is chosen. This is effected in DLV [36] by the weak con-
straint

i~ bottleChosen(X) [1].

Intuitively, each fact bottleChosen(c) in an answer set is assigned a penalty of 1,
and total penalties are minimized. In our example, the optimum are two bottles (e.g.,
bottleChosen(“ Chardonnay”) and bottle Chosen(“ ChiantiClassico™)). For a formal
definition of the syntax and semantics of weak constraints, and a refinement using pri-
ority levels, we refer to [36]. O

4 Combining Rules with Ontologies

Motivated by our wine selection example, we have illustrated that answer-set program-
ming might be a good candidate for filling the gap extending the Semantic-Web layers
with a suitable rules component. However, there are several obstacles in finding the
right combination of rich ontology languages such as OWL, which are based on clas-
sical logic, with logic-programming based languages such as answer-set programming
(see also [53] for a discussion).

4.1 Logic Programming vs. Classical Logic

As well-known, the core of logic programming, i.e., definite positive programs, has a
direct correspondence with the Horn subset of classical first-order logic. To wit, a rule
of form (1) which is definite (i.e., when [= 1) and not-free (i.e., when m = k) can be
read as a first-order sentence

MbiA...AbDa 2)

106 T. Eiter et al.

where (V) denotes the universal closure operator. This subset of first-order logic allows
for a sound and complete decision procedure for entailment of ground atomic formulae,
which is in the function-free (datalog) case computable in finite polynomial time.

However, there are some slight but important differences between the logic-pro-
gramming view and the first-order view already for definite programs.

Non-ground entailment. The first divergence becomes apparent already in case of pos-
itive programs. The logic-programming semantics is defined in terms of minimal Her-
brand models, i.e., sets of ground facts. Take for example the logic program

potableLiquid (X) «— wine(X);
wine(X) «— whiteWine(X);
white Wine (*“ Welschriesling”).

Both the logic-program reading and the Horn-clause reading of this program yields
the entailment of facts white Wine(“ WelschRiesling”), wine(“ WelschRiesling”), and
potableLiquid (“ WelschRiesling”). The first-order reading of the program would allow
further non-factual inferences, such as

wine(“ WelschRiesling”) D potableLiquid (“ WelschRiesling”) and
V X .white Wine(X) D PotableLiquid(X),

which are not entailed by the logic program. Logic programs, minimal Herbrand models
(and answer sets as their extension) are mainly concerned with facts.

Negation as failure vs. classical negation. Divergences become more severe when con-
sidering programs with negation. Negation as failure not is evaluated with respect to
a closed-world assumption (CWA) whereas negation in description logics and thus in
OWL (owl:complementOf) is interpreted classically. Let us again demonstrate this
with a small example:

wine(X) «— whiteWine(X);
nonWhite(X) < not white Wine(X);
wine(myDrink).

Not given any additional information, under the answer-set semantics this program
entails both bravely and cautiously the fact non White(myDrink). However, this con-
clusion would not be justified in a first-order or description-logics reading of the above
program, such as:

VX. (WhiteWine(X) D Wine(X))A WhiteWine T Wine
VX. (= WhiteWine(X) D NonWhite(X))A - WhiteWine T NonWhite
Wine(myDrink). myDrink € Wine.

The reason for this is the different purposes classical negation and negation as failure
serve: the latter to be understood as modeling (defeasible) default assumptions with
nonmonotonic behavior. While some people argue that such a kind of nonmonotonic
negation is unsuitable for an open environment like the Web, there are several applica-
tions, e.g., in information integration, where negation as failure has proved particularly
useful (see Subsection 5.3).

Reasoning with Rules and Ontologies 107

Strong negation vs. classical negation. Note that also strong negation, as used in ASP
has a slightly different flavor than its classical counterpart. That is, the following two
representations of a logic program and an OWL knowledge base again slightly diverge:

Wine(X) «— Whitewine(X); Whitewine C Wine;
—Wine(myDrink). myDrink € ~Wine.

Whereas the description-logic knowledge base would entail myDrink € —white Wine,
the corresponding fact —white Wine(myDrink) is not a justified conclusion in a logic-
programming setting, i.e., neither the law of the excluded middle nor contraposition
does hold upfront in ASP. Nonetheless, one can “emulate” classical behavior of certain
predicates in ASP. For instance, adding a rule white Wine(X) V —white Wine(X) in
the above example would achieve this.

Logic Programming and equality. Answer-set programming engines typically deploy
a unique-names assumption (UNA) and do not support real equality reasoning, i.e.,
equality in the head of rules. This does not comply necessarily with the view in clas-
sical logic, and thus with RDF and OWL, where no such assumption is made. While
equality “="" and inequality “#” predicates are allowed in rule bodies, they represent
syntactic equality and (default) negation thereof only. This shall not be confused with
OWL’s owl:sameAs and owl:differentFrom directives. Following up the example from

Section 2.2, consider the following rule base:

knowsOtherPeople(X) «— knows(X,Y), X #Y;
knows(“http://polleres.net/foaf.rdf#me”,
“http://www.polleres.net/foaf.rdf#me”).

Under standard ASP semantics where UNA is deployed, “#” amounts to “not =".
Thus,

knowsOtherPeople(“http://polleres.net/foaf.rdf#me”)

would be entailed.

Enabling reasoning with equality has usually a very high computational cost. Indeed,
common description-logic reasoners like FACT++ [55] or RACER [26] also do not
support full equality reasoning and nominals.

Decidability. Finally, the probably largest obstacle towards combining the description-
logics world of OWL and the logic-programming world of ASP stems from the fact that
these two worlds face undecidability issues from two completely different angles.

Indeed, decidability of ASP follows from the fact that it is based on function-free
Horn logic where ground entailment can be determined by checking finite subsets of the
Herbrand base, i.e., decidability and termination of evaluation strategies is guaranteed
by the finiteness of the domain. However, this is not so for description logics. Decidabil-
ity of reasoning tasks such as satisfiability, class subsumption, or class membership in
description logics is often strictly dependent from the combination of constructs which
are allowed in the terminological language.

It is often possible to prove decidability by means of the so called tree-model prop-
erty. This property basically says that a description-logic knowledge base has a model

108 T. Eiter et al.

iff it has a finite tree shaped model whose depth and branching factor are bounded by the
size of the knowledge base [5]. In general, it is possible to attempt to prove decidability
by means of a generic finite-model property, although it is worth noting that SHOZN
neither has the tree-model property nor the finite-model property [32].

Unfortunately, it is difficult to combine two decidable fragments coming from the
two worlds. As shown in [37], the naive combination of even a very simple description
logic with an arbitrary Horn logic is undecidable.

4.2 Strategies for Combining Rules and Ontologies

As one can expect by the above-mentioned problems, combining the two worlds of logic
programming and classical logic, underlying description logics, is not straightforward.

However, a naive combination of description logics and Horn rules could be imag-
ined as a possible approach for the Rules Layer of the Semantic Web. Indeed, the Se-
mantic Web Rule Language (SWRL) [31] proposal, a recent W3C member submis-
sion, straightforwardly extends OWL DL in this spirit. Given an OWL knowledge base,
SWRL allows to extend it by Horn rules using unary and binary atoms representing
classes (concepts) and roles (properties), respectively. This allows, for instance, com-
bined knowledge bases such as the following:

shareFood(W1,W2) «— hasDrink(D,W1), hasDrink(D, W2),
Whitewine & Wine;

“Trout grilled” € Dish;

(“Trout grilled”,“WelschRiesling”) € hasDrink,

3)

where the definition of the role “shareFood” by means of the first rule is not expressible
directly in description logic alone. However, as mentioned above, this freedom comes
at he cost of undecidability in the general case.

On the other extreme, the overcautious approach of allowing interoperability only on
the intersection of description logics and Horn logic seems to be too restricted. Grosof
et al. [24] have defined this intersection where the logic-programming and description-
logic worlds coincides which they call DLP. However, such an approach leaves a rule
and ontology language with very restrictive expressivity. Layering several extensions in
the direction of logic programming and ASP on top of the DLP fragment have lead to
the Web Rule Language (WRL) [2] proposal, an alternative W3C member submission.

In the following, we want to take a closer look at approaches which go beyond DLP
but still retain decidability in a more cautious integration than SWRL. Especially, when
we want to combine full description logics with full answer-set programming (i.e., not
only Horn Rules), things become more involved. In principle, the different approaches
in the literature can be divided into two major streams, as described below.

Interaction of ontologies and rules with tight semantic integration. Rules are intro-
duced by adapting existing semantics for rule languages directly in the Ontology Layer.
The DLP fragment on the one end and the undecidable SWRL approach on the other
mark two extremes of this stream. Nonetheless, in between, recently several proposals
have been made to extend expressiveness while still retaining decidability, remarkably

Reasoning with Rules and Ontologies 109

|Ontologies {OWL) Rules | | Ontologies (OWL) [E‘ Rules |

| RDFS | | RDFS |

Fig. 3. Integrating Ontologies and Rules by defining “safe interaction” (left) vs. “safe interfaces”
(right)

several attempts in the ASP field. Common to these approaches are syntactic restrictions
of the combined language in a way that guarantees “safe interaction” of the rules and
ontologies parts of the language (see Fig. 3).

The first such approach, AL-Log [12], extends the description logic AL by Horn
rules, but with the additional “safety” restriction that every variable of a rule » must
appear in at least one of the rule atoms occurring in the body of r, where rule atoms are
those predicates which do not appear in the description-logic knowledge base part, but
only in rules. This restriction, which retains decidability, is for instance violated by (3).
The decidability result for such so-called DL-safe rules is extended to a more expressive
description logic SHZ Q in [43] bringing us closer to OWL.

Another approach [29] in this direction shows decidability for query answering in
ALCHOQ(U, M) with DL-safe rules by an embedding in extended conceptual logic
programming, a decidable extension of the answer-set semantics by open domains.

The most recent work in this direction [51,52,53] loosens the safety restriction fur-
ther, by allowing non-rule atoms also in rule heads, and also gives a nonmonotonic
semantics for non-Horn rules in the spirit of answer-set programming.

Integration of ontologies and rules with strict semantic separation. In this setting, ASP
should play a central role in the Rules Layer, while OWL/RDF flavors would keep their
purpose of description languages, not aimed at intensive reasoning jobs, in the under-
lying Ontology Layer. The two layers are kept strictly separate and only communicate
via a “safe interface”, but do not impose syntactic restrictions on either the rules or the
ontology part (see again Fig. 3).

From the Rules Layer point of view, ontologies are dealt with as an external source of
information whose semantics is treated separately. Nonmonotonic reasoning and rules
are allowed in a decidable setting, as well as arbitrary mixing of closed and open world
reasoning. This approach typically involves special predicates in rule bodies which al-
low queries to a description-logic knowledge base, and exchange factual knowledge,
Examples for this type of interaction are [18,14,41] and the call of external description-
logic reasoners in the TRIPLE [54] rules engine. In the remainder of this paper, we
will focus on nonmonotonic description-logic programs [18,14] as a showcase solution
among these approaches.

For excellent surveys which classify the numerous proposals for combining rules and
ontologies we refer the interested reader to [4,46].

5 Nonmonotonic Description-Logic Programs

In this section, we introduce description-logic programs (or simply dl-programs), which
are a novel combination of normal programs and description-logic knowledge bases.

110 T. Eiter et al.

5.1 Syntax

Informally, a dl-program consists of a description-logic knowledge base L and a gener-

alized program P, which may contain queries to L. Roughly, in such a query, it is asked

whether a certain description-logic axiom or its negation logically follows from L or not.
A dl-query Q(t) is either

(a) a concept inclusion axiom F’ or its negation = F'; or
(b) of the form C'(t) or =C'(t), where C'is a concept and ¢ is a term; or
(c) of the form R(t1,t2) or =R(t1,t2), where R is a role and 1, t5 are terms.

A dl-atom is an expression of the form

DL[Sloplpla"'7S7n0pmpm;Q}(t)a (4)

where m >0, and such that each S; is either a concept or a role, op, € {W, U}, p; is
a unary resp. binary predicate symbol, and Q(t) is a dl-query. We call p1, ..., p., the
input predicate symbols of (4). Intuitively, op, =W (resp., op; =) increases S; (resp.,
—5;) by the extension of p;.

A dl-rule r has the form (1),® where any literal by, . . ., b,,, € B(r) may be a dl-atom.
We denote by BT (r) (resp., B~ (r)) the set of all dl-atoms in B (r) (resp., B~ (r)). A
dl-program KB = (L, P) consists of a description-logic knowledge base L and a finite
set P of dl-rules.

Positive and normal dl-rules are defined like for ordinary programs. A dl-program
KB = (L, P) is positive, if P is “not”-free, and is normal, if rule heads are literals (i.e.,
if { = 1in (1)).

We illustrate dl-programs in terms of our running example.

Example 11 (Wine program, OWL). Suppose now that an ontology is available, formu-
lated in OWL, which describes information about available wine bottles (as instances of
aconcept Wine), and contains (among others) further concepts Sweet Wine, DryWine,
RedWine, and White Wine for different types of wine. The earlier program is modified
by fetching the wines now from the ontology, using the following rule:

% A suite of wine bottles and their kinds
wineBottle(X) «— DL[“Wine”](X).

The isA predicate can then be defined by means of the following rules:

% A suite of wine bottles and their kinds
isA(X, “sweetWine”) — wineBottle(X), DL[“Sweet Wine”](X);
isA(X, “dryWine”) « wineBottle(X), DL[*“dryWine”|(X);
isA(X, “redWine”) — wineBottle(X), DL[“red Wine”](X
isA(X, “white Wine”) «— wineBottle(X), DL[* White Wine”)

However, the isA predicate may be eliminated; instead of

compliantBottle(X, Z) — preferredWine(X,Y), isA(Z,Y),

)
(X).

we may write simply use

8 In [18], only rules with [=1 are considered; the extension to arbitrary [is straightforward.

Reasoning with Rules and Ontologies 111

% A suite of wine bottles and their kinds:
wineBottle(X) — DL[*“Wine”|(X). ®)

% Persons and their preferences:

person(“azxel”); preferred Wine(“azel”, “white Wine”); (6)
person(“gibbi”); preferred Wine(“gibbi”, “red Wine™); (@)
person(“roman”); preferredWine(“roman”, “dryWine”). ®)

% Available bottles a person likes:
compliantBottle(X, Z) < preferred Wine(X, “Sweet Wine”), wineBottle(Z), ©)
DL[*“SweetWine”|(Z);
compliantBottle(X, Z) « preferred Wine(X, “DryWine”), wineBottle(Z),
DL[“DryWine”|(Z);
compliantBottle(X, Z) « preferredWine(X,“RedWine”), wineBottle(Z), an
DL[“RedWine”|(Z);

compliantBottle(X, Z) < preferredWine (X, “ White Wine”), wineBottle(Z),
DL[* White Wine”)(Z).

(10)

(12)

9 Available bottles a person dislikes:
doesNotLike(X, Z) < person(X), wineBottle(Z), not compliantBottle(X, Z). (13)
% Generation of multiple answer sets:
bottleChosen (X) V —bottleChosen(X) «— compliantBottle(Y, X). (14)
% Ensuring that each person gets a bottle:

hasBottleChosen(X) < bottleChosen(X), compliantBottle(X, Z); (15)
— person(X), not hasBottleChosen (X). (16)

Fig. 4. dl-program for wine selection

compliantBottle(X, Z) — preferredWine (X, ¢), wineBottle(Z), DL[c|(Z),

for each ¢ € {“Sweet Wine”, “DryWine”, “Red Wine”, “ White Wine”}. The resulting
program is depicted in Fig. 4. Notice that Rules (5)-(12) form a positive normal dl-
program. O

Example 12 (Wine program, OWL II). Suppose now that we learn that there is a bottle,
“Selakslce Wine”, which is a white wine and not dry. We may add this information to
the logic program using the facts

white(“SelaksIce Wine”) and not dry(“Selakslce Wine”).

112 T. Eiter et al.

In our program, we may pass this information to the ontology by adding in the dl-atoms
the operations

“WhiteWine” d white and “DryWine”dInot dry.

For instance, D L[“ Wine”](X) is changed to D L[White Wine”Wwhite, “ Dry Wine”d
not dry; “Wine”](X). O

5.2 Semantics

We first define Herbrand interpretations and the truth of dl-programs in Herbrand inter-
pretations. In the sequel, let KB = (L, P) be a dl-program.

The Herbrand base of P, denoted HB p, is the set of all ground literals with a stan-
dard predicate symbol that occurs in P and constant symbols in ¢. We denote by DLp
be the set of all ground instances of dl-atoms with constant symbols in &.

An interpretation I relative to P is a consistent subset of B p. We say that I is
a model of £ € HBp under L, denoted I =y, ¢, iff £ € I, and of a ground dl-atom a of
form (4) under L, denoted I =1, a, iff LU |J;~, A;(I) = Q(t), where

- for op, =W, A;(I)={Si(e) | pi(e) € I}, and
- for op; =u, A;(I) ={~Si(e) | pi(e) € I}.

We say that I is a model of a ground dl-rule r under L, denoted I =y, iff =1,
H(r) whenever I =1 for all [€ B*(r) and I [~ 1 for all [€ B~ (r). Furthermore,
I is a model of a dl-program KB = (L, P), denoted I = KB, iff I =, r for all
r € ground(P). We say that KB is satisfiable (resp., unsatisfiable) iff it has some (resp.,
no) model.

Note that the herein introduced dl-atoms are monotonic: A ground dl-atom a is said
to be monotonic whenever given two interpretations I’ C I” it holds that if I’ =f, a
then I” =1, a as well.

Example 13 (Wine program, OWL, continued). Consider the interpretation

I = {wineBottle(“ TaylorPort™), preferred Wine (“gibbi”, “red Wine™),
isA(“TaylorPort”, “redWine”)},

and the rule r, given by:

isA(“TaylorPort”, “redWine”) «— wineBottle(“ TaylorPort”),
DL[“RedWine”](“ TaylorPort”).

Suppose “Red Wine”(“ TaylorPort”) is true in the ontology. Then, we have that I =,
DL[“RedWine”|(“TaylorPort”), and hence I =y r. On the other hand, I }~p s,
where s is given by

compliantBottle(“gibbi”, “ TaylorPort”) « preferred Wine(“gibbi”, “red Wine”),
wineBottle(“ TaylorPort”),
DL[“RedWine”|(“ TaylorPort™),

since I contains all atoms in the body of s but not H(s) = compliantBottle(“gibbi”,
“TaylorPort”). O

Reasoning with Rules and Ontologies 113

Minimal-model semantics of positive dl-programs. We first consider positive dl-pro-
grams. Like for ordinary positive programs, every nondisjunctive positive dl-program
which is satisfiable has a single minimal model, which naturally characterizes its se-
mantics. Observe that, as pointed out above, dl-atoms considered here are monotonic.

For ordinary normal positive programs P, it is well-known that the intersection of
two models of P is also a model of P. A similar result holds for dl-programs.

Theorem 1. Ler KB = (L, P) be a normal positive dl-program. If the interpretations
1, I C HB p are models of KB, then Iy N I3 is also a model of KB.

As an immediate corollary of this result, every satisfiable positive dl-program KB has
a unique least model, denoted M g, which is contained in every model of KB.

Corollary 1. Let KB = (L, P) be a normal positive dl-program. If KB is satisfiable,
then there is a unique model I C HB p of KB such that I C J for all models J C HB p
of KB.

Example 14. Consider Rules (5)—(12) in Fig. 4. Combined with the classical wine on-
tology, which is consistent, they have a single minimal model. O

On the other hand, if a dl-program contains disjunction, then multiple minimal models
of KB may exist.

Example 15. Consider again the program in Fig. 4, and disregard the rules contain-
ing default negation “not”. In the wine ontology, each class Red Wine, White Wine,
and DryWine has several instances (and some of them have common instances, e.g.,
“TaylorPort”). Therefore, for each of azel, gibbi, and roman, multiple possibilities to
choose a compliant bottle exist. In combination, they give rise to multiple answer sets
of the reduced program. a

Strong answer-set semantics of dl-programs. We now define the strong answer-set se-
mantics of general dl-programs. It reduces to the minimal model semantics for positive
dl-programs, using a generalized transformation that removes all NAF-literals.

In the sequel, let KB = (L, P) be a dl-program.

Definition 1. The strong dl-reduct of P relative to L and an interpretation I C HB p,
denoted sPy, is the set of all dl-rules obtained from ground(P) by

(i) deleting every dl-rule r such that I|=r, ¢ for some { € B~ (r), and
(ii) deleting from each remaining dl-rule r all literals in B~ (r).

Note that (L, sP}) is a positive dl-program. Moreover, by Corollary 1, it has a least
model if it is satisfiable and normal.

Definition 2. Let KB = (L, P) be a dl-program. A strong answer set of KB is an in-
terpretation I C HB p such that I is a minimal model of (L, sP}).

Example 16 (Wine program, OWL continued). Suppose that the concept Red Wine pos-
sesses the instances “TaylorPort” and “ChiantiClassico”, WhiteWine the instance

114 T. Eiter et al.

“Selakslce Wine”, and DryWine the instance “ChateauMargauz”, and assume that
Sweet Wine is empty. Note that these concepts are all subconcepts of Wine.

Consider the interpretation I which includes, besides the facts in the program, the
following items:

compliantBottle(“axel”, “Selakslce Wine”);
compliantBottle(“gibbi”, “ TaylorPort™);
compliantBottle(“gibbi”, “ ChiantiClassico™);
compliantBottle(“roman”, “ ChateauMargauz”);

bottleChosen(“azxel”); bottleChosen(“gibbi”); bottleChosen(“roman”);
hasBottleChosen (“azel”); hasBottleChosen (“gibbi”);
hasBottleChosen (“roman’);

doesNotLike(“azel”,“ TaylorPort™);
doesNotLike(“axel”, “ ChiantiClassico™);
doesNotLike(“azel”, “ ChateauMargaux™);
doesNotLike(“gibbi”, “Selakslce Wine”);
doesNotLike(“gibbi”, “ ChateauMargauz™);
doesNotLike(“roman”, “Selakslce Wine™);
doesNotLike(“roman”, “ TaylorPort”);
doesNotLike(“roman”, “ ChiantiClassico”).

It can be checked that [is a strong answer set of KB. Indeed, [satisfies all positive
rules in P, as well as all rules of form

doesNotLike(p, w) < person(p), wineBottle(w),

stemming from Rule (13) in Fig. 4, for each pair p, w such that compliantBottle(p, w)
is not contained in /. Furthermore, Rule (16) vanishes in the reduction. Thus, [is a
model of (L, sP}). Moreover, I is minimal as no facts can be removed from it without
losing modelhood. Therefore, I is an strong answer set of KB5. O

The following result shows that the strong answer-set semantics of a dl-program
KB = (L, P) conservatively extends the ordinary answer-set semantics of P.

Theorem 2. Let KB = (L, P) be a dl-program without dl-atoms. Then, [C HBp is a
strong answer set of KB iff it is an answer set of the ordinary program P.

As desired, strong answer sets of a dl-program KB are also models, and, moreover,
minimal.

Theorem 3. Ler KB = (L, P) be a dl-program and let M be a strong answer set of
KB. Then, (a) M is a model of KB, and (b) M is a minimal model of KB.

Proof. (a) Let I be a strong answer set of KB. To show that [is also a model of KB, we
have to show that I =y, r for all r € ground(P). Consider any r € ground(P). Suppose
that I =1, £ for all £ € B*(r) and I [y, £ for all £ € B~ (r). Then, the dl-rule ' that is
obtained from r by removing all the literals in B~ (r) is contained in sP{. Since [is a
minimal model of (L, sP}) and thus in particular a model of (L, sPy), it follows that
I'is amodel of 7. Since I |=r, £ forall £ € B*(r') and I f£, £ forall € B~ (') =10,

Reasoning with Rules and Ontologies 115

it follows that I |=;, ¢’ for some ¢/ € H(r). This shows that I =, r. Also, each rule
r € ground(P) having no counterpart in s P{ is trivially modeled by I since I £ B(r).
Hence, I is a model of KB.

(b) By Part (a), every strong answer set I of KB is a model of KB. We show that |
is a minimal model of KB. Towards a contradiction, suppose that there exists a model
J of KB such that J C I. Since J is a model of KB, it follows that J is also a model
of (L,sP{). As every dl-atom in DLp is monotonic relative to KB, it then follows
that sP{ C sP{. Hence, J is also a model of (L, sP}). But this contradicts that I is a
minimal model of (L, sP}). Hence, I is a minimal model of KB. O

Note that every normal positive dl-program KB has at most one strong answer set,
which coincides with the single minimal model of KB.

5.3 Further Examples

Closed-world reasoning. As stressed in Section 4, it is acknowledged that many Seman-
tic-Web application scenarios require some form of closed-world reasoning [1,28].
Using dl-programs, the CWA may be easily expressed on top of an external knowl-
edge base which can be queried through suitable dl-atoms. We show this here for a
description-logic knowledge base L.
Intuitively given a concept C, its negated version C' (under CWA) is defined by
adding to a given dl-program the rule

C(X) « not DLIC|(X)

For example, given that L = { White Wine C Wine, Wine(“ChiantiClassico”)}, for
concepts White Wine and Wine, the CWA infers — White Wine(“ ChiantiClassico”).

As well known, the CWA can lead to inconsistent conclusions. If, in the above ex-
ample, L contains further axioms

Wine = White Wine LU ~Red Wine and
1 = WhiteWine M —~RedWine,

then the CWA infers
White Wine(“ ChiantiClassico”) and Red Wine(“ChiantiClassico”),

which is inconsistent with L.
We can check inconsistency of the CWA with the further rule

fail — D L] White Wined White Wine, Red Wined Red Wine; L](b), not fail,

where L is the empty concept (entailment of L (), for any constant b, is tantamount to
inconsistency).

Workarounds to these semantic difficulties are well known in the literature: mini-
mal-model reasoning, or the extended closed-world assumption (ECWA), for instance,
avoid the problem of CWA inconsistency [9,23]. These extensions can be easily imple-
mented in the framework of dl-programs, by means of a suitable encoding that computes
minimal models of a knowledge base L. Intuitively, building minimal models of L cor-
responds to concluding as much negative facts as possible while keeping consistency.

116 T. Eiter et al.

Default reasoning. By maximizing rather than minimizing extensions, default reason-
ing, as in the approach by Poole [48], on top of a description-logic knowledge base may
be supported. The rationale is to associate to individuals default values for concept and
roles. Default information is maximized, in the sense that it is propagated as much as
possible unless inconsistency arises.

Although acknowledged as being essential for modeling reasoning in the Semantic-
Web context (see, e.g., [3]), description-logic knowledge bases do not allow nonmono-
tonic inheritance. This often causes many ontology design problems, especially in those
cases where overriding some default-concept property value is the most natural way of
defining a subclass. Defaults are especially tailored at implementing nonmonotonic in-
heritance. For example, the rules

shouldbewhite(W) — DL|[sparklingWine|(W), not nonwhite(W),
nonwhite(W) «— D L[White Wine W shouldbewhite; = White Wine](W)

on top of a part, L, of the wine ontology express that sparkling wines are white by
default. Given

L = { sparklingWine(“ VeuveCliquot™),
(sparklingWine M —~white Wine)(“ Lambrusco”) },

we then can conclude white (“ VeuveCliquot™) and nonwhite(“Lambrusco”).

5.4 Additional Features of dl-programs

An interesting fragment of dl-programs are stratified dl-programs, which are, intu-
itively, composed of hierarchic layers of positive dl-programs linked via default nega-
tion. This generalization of the classic notion of stratification embodies a fragment of
the language having single answer sets. Semantics for programs (or sub-programs) be-
longing to this fragment can be evaluated at a less expensive computational cost [15].

Furthermore, it is possible to evaluate dl-programs either under weak answer-set
semantics [18] and a well-founded semantics [19]. The former does not make any as-
sumption on the nature of a dl-atom (whereas monotonic dl-atoms are treated explicitly
in the semantics discussed here), while the latter is a generalization of the traditional
well-founded semantics [56] for dl-programs.

5.5 Prototype Implementation

A fully operational prototype, named NLP-DL, ready for experiments, is available via
a Web interface at

http://www.kr.tuwien.ac.at/staff/roman/semweblp/

The system accepts nondisjunctive dl-programs as input,’ given by an ontology formu-
lated in OWL DL (as processed by RACER [26]) and a set of dl-rules in the language
above, where <, W, and U, are written as “:-”, “+=", and “—=", respectively. The fol-
lowing reasoning tasks are featured:

® An implementation of disjunctive dl-programs is available through dlvhex, an implementation
of HEX-programs (see next section for details about HEX-programs and dlvhex).

Reasoning with Rules and Ontologies 117

(1) Computing models (answer sets or the well-founded model) of a given dl-program:
For computing the answer sets, a preliminary computation of the well-founded
model may be issued, which semantically approximates the answer sets—this is
exploited for optimization.

(i) Evaluating a given query on a given dl-program: Under the answer-set semantics,
both brave reasoning and cautious reasoning are available.

The system architecture integrates the external DLV [36] and RACER engines, the
latter being embedded into a caching module, a well-founded semantics module, an
answer-set semantics module, a pre-processing module, and a post-processing module.

Each internal module has been implemented using the PHP scripting language; the
overhead is insignificant, provided that most of the computing power is devoted to the
execution of the two external reasoners. In particular, efficient usage of RACER is criti-
cal for the system performance. Respective techniques, mainly based on caching query
results and exploiting monotonicity of description-logic reasoning, are described in [15].

6 Extensions

Example 17 (Motivating Example, Part III). Now that a machinery, automatically gen-
erating a selection of wine bottles for the social dinner, is ready, the organizers wonder
whether it is possible to accomplish this task in a better way. After all, the Semantic
Web envisions a world where machine-to-machine protocols express their full poten-
tial, and people are freed from most annoying jobs. In this context, multiple domain
descriptions (i.e., multiple ontologies), possibly with differing semantics, may interact
closely and have to be ready for information exchange.

For instance, most of the attendees may have his or her own FOAF [21] descrip-
tion on-line. These description might potentially publish all the public data about an
attendee, including his or her preferred wine. However, now the organizers notice that
they need some formalism powerful enough to interface several formalisms and multi-
ple ontologies at once. O

6.1 HEX-programs
HEX-programs generalize dl-programs with regard to the following features:

— The notion of a dl-atom is generalized to that of an external atom. The latter kind
of atom may bind knowledge coming from different external formalisms, with pos-
sibly differing semantics. Also, an external atom can delegate special tasks to tra-
ditional programs (such as string processing), for which logic programming is not
tailored at. For instance, it is possible to merge RDF ontologies with OWL ontolo-
gies, as in the following small program:

triple(X,Y, Z) — url(U), &rdf [U)(X,Y, Z);
— &DLinconsistent[triple].
Also, possible external sources of knowledge can be merged with arbitrary strate-

gies, and can bring in new symbols not appearing elsewhere in a given program
(““value invention”).

118 T. Eiter et al.

— It is made possible to quantify over sets of concepts just as it is done with in-
dividuals, and to freely exchange the former objects with the latter ones. These
meta-reasoning features are enabled by means of higher-order atoms, such as in
the rule

“wine:Wine”(X) « triple(X, “rdf:type”, “wine:Wine”).

— Logic programs are made compatible with naming conventions employed in the
Semantic-Web world. Thus, a directive such as

#namespace(wine, “http://www.w3.org/TR/2003/
PR-owl-guide-20031209/wine#”)

allows to interpret the constant symbol “wine:Wine” as a shortcut for the symbol

“http://www.w3.0rg/TR/2003/PR-owl-guide-20031209/
wine#Wine”.

In this section, we briefly discuss HEX-programs; for further details, see [14].

6.2 Syntax and Semantics

HEX-programs are built on mutually disjoint sets C, X, and G of constant names, vari-
able names, and external predicate names, respectively. Unless stated otherwise, ele-
ments from X’ (resp., C) are denoted with first letter in upper case (resp., lower case);
elements from G are prefixed with “ & » 10 Constant names serve both as individual and
predicate names. Importantly, C may be infinite.

Elements from C U X" are called terms. A higher-order atom (or atom) is a tuple
(Yo, Y1,...,Y,), where Yy, ..., Y, are terms; n > 0 is its arity. Intuitively, Y} is the
predicate name; we thus also use the familiar notation Y5 (Y73, ...,Y,,). The atom is
ordinary, if Y is a constant. For example, (x, rdf :type, ¢) and node(X) are ordinary
atoms, while D(a, b) is a higher-order atom. An external atom is of the form

&g[Yl,...7Yn}(X17...,Xm),

where Y7,...,Y, and X;,..., X,, are two lists of terms (called input list and output
list, respectively), and &g € G is an external predicate name. We assume that &g has
fixed lengths in(&g) = n and out(&g) = m, respectively. Intuitively, an external
atom provides a way for deciding the truth value of an output tuple depending on the
extension of a set of input predicates.

Example 18. The external atom &reach[edge, a](X) may compute the nodes reachable
in the graph edge from the node a. Here, in(&reach) =2 and out(&reach)=1. O

A HEX-program, P, is a finite set of rules of form (1), where literals in the heads of rules
are (higher-order) atoms, and literals in the bodies of rules contain either (higher-order)
atoms or external atoms.

101 [14], “#” is used instead of “ & ”’; the change is motivated to be in accord with the syntax
of the prototype system.

Reasoning with Rules and Ontologies 119

The semantics of HEX-programs generalizes the answer-set semantics [22], and is
defined using the FLP-reduct [20], which is more elegant than the traditional reduct
and ensures minimality of answer sets.

The Herbrand base of a HEX-program P, denoted HB p, is the set of all possible
ground versions of atoms and external atoms occurring in P obtained by replacing
variables with constants from C. The grounding of a rule r, ground(r), is defined ac-
cordingly, and the grounding of program P is ground(P) = |J,.c p ground(r).

Example 19. For C = {edge, arc, a,b}, ground instances of E (X, b) are, for instance,
edge(a,b), arc(a,b), and arc(arc,b); ground instances of &reach[edge, N](X) are
&reachledge, edge](a), &reach|edge, arc](b), and &reach[edge, edge](edge), etc. O

An interpretation relative to P is any subset I C HDBp containing only atoms. We
say that I is a model of atom a € HB p, denoted I |=a, if a € I. With every external
predicate name &g € G we associate an (n+m+1)-ary Boolean function fg., (called

oracle function) assigning each tuple (I, 41 ..., Yn, 1, .., T) either 0 or 1, where
n = in(&g), m = out(&g), I C HBp, and z;,y; € C. Wesay that] C HBp isa
model of a ground external atom a = &g[y1, ..., yn|(z1, ..., Tm), denoted I |= a, iff

Jeeg(Loyi s Yns T1y oo T) =10

Example 20. Associate with the external predicate name &reach a function fg reqch
such that fereqcen(L, By A, B) = 1 iff B is reachable in the graph E from A. Let
I = {e(b,c),e(c,d)}. Then, I is a model of the external atom &reachle, b](d) since
Jareacn(I,e,b,d) = 1. o

Let r be a ground rule. We define (i) I = H(r) iff there is some a € H(r) such
that [=a, (ii) I = B(r) iff I =a for all a € B (r) and I [~ a for all a € B~ (r), and
(iii) I =riff I =H (r) whenever I |= B(r). We say that I is a model of a HEX-program
P, denoted I =P, iff I =r for all r € ground(P).

The FLP-reduct [20] of P with respect to I C HB p, denoted fPI , 1s the set of all
r € ground(P) such that I = B(r). I C HBp is an answer set of P iff I is a minimal
model of fPT.

Differences between the FLP-reduct and the strong dl-reduct. The two above semantics
are not equivalent in the presence of nonmonotonic external atoms, where the notion of
monotonicity for an external atom generalizes that for dl-atoms. Let us assume to have
an external predicate &neyg, defined in such a way that the ground atom &neg[p](a)
satisfies I [~ &neg[p](a) whenever an interpretation I is such that I =p(a) (i.e., &neg
reproduces the behavior of the usual negation as failure). The program P, consisting of
the single rule

p(a) — not &negp|(a),

has S; = {p(a)} as a strong answer set. However, also So = 0 is a strong answer set
of P, thus Sy is not minimal. It is often desirable that answer sets are incomparable as
in the above case: intuitively, self-supportedness of an atom such as in the rule p(a) «—
p(a) should not give evidence of the truth of p(a).

The FLP-reduct overcomes these drawbacks. Indeed, it can be proven that this reduct
produces only incomparable answer sets: under FLP semantics, 57 is not an answer set.

120 T. Eiter et al.

6.3 Further Examples

With HEX-programs, it is possible to extract information from different sources in the
same program.

Assume we want to invite all friends of Axel Polleres for dinner, and that their wine
preferences are given by means of their FOAF descriptions. To this end, we introduce
the &rdf atom for dealing with RDF sources, and the &dIC atom that mimics par-
tially the semantics of a dl-atom. An atom & rdf [u](s, p, 0) is true if (s p o) is an RDF
triple asserted at URI u. Also, &dIC[u, ¢|(z) is true if x is an individual which can
be proved to belong to class c in the knowledge base located at URI v (under OWL
semantics).

First, namespace directives allow us to deal with individuals and concepts (constant
symbols) coming from different Web sources:

#namespace(wine, “http: //www.w3 .org/TR/2003/
PR-owl-guide-20031209/wine#”);

#namespace(foaf ,“http://xmlns.com/foaf/0.1/”);

#namespace(rdf ,“http://www.w3.0rg/1999/02/
22-rdf-syntax-ns#”);

#namespace(foafplus, “http: //www.example.org/foafplus”);

#namespace(rdfs, “http: //www.w3.0rg/2000/01/rdf-schema#”).

<foaf:PersonalProfileDocument rdf:about="">
<foaf:maker rdf:resource="#me"/>
<foaf:primaryTopic rdf:resource="#me" />

</foaf:PersonalProfileDocument>

<foaf:Person rdf:ID="me">
<foaf:name>Axel Polleres</foaf:name>

<foaf:knows>
<foaf:Person>

<foaf:name>Giovambattista Ianni</foaf:name>
<foaf:mbox>ianni@mat.unical.it</foaf :mbox>
<rdfs:seeAlso rdf:resource=
"http://www.gibbi.com/test_foaf.gibbi.rdf"/>
</foaf:Person>
</foaf :knows>

<foafplus:winePreference rdf:resource="&vin; SweetWine" />
</foaf:Person>

Fig. 5. An example FOAF description, extended with the foafplus:winePreference property

Reasoning with Rules and Ontologies 121

Suppose now that a FOAF description is given, like in Fig. 5. This FOAF description
is enriched with the property foafplus :winePreference which expresses a wine
preference for a given person. This small description can be interfaced with a HEX-
program in the following way:

Y (X, Z, triple) «— &rdf [U|(X,Y, Z), foafurl(U);
T(X, triple) «— “rdf:type” (X, T, triple).

The above rules materialize the RDF triples contained in Axel’s FOAF description.

Then, the predicate preferred Wine is now computed by extracting data from exter-
nal descriptions of Axel’s friends (note that further external ontologies are consulted
whose locations depend on the first consulted ontology):

mainEntity (M, triple) «— “foaf:primaryTopic’ (X, M, triple),
“foaf:PersonalProfileDocument’(X, triple);
community(A,Y) « “foaf:knows”(X, A, triple),
“rdfs:seeAlso”(A, Y, triple);
preferredWine(M,Y') «— “foafplus:winePreference” (M, Y, triple),
mainEntity(M, triple);
preferredWine(X,Y) « community(X,U),
&rdf [U](,“foafplus:winePreference”,).

The next rule facilitates the quantification over concept names given to the predicate
&dlc:

compliantBottle(X, Z) «— wineurl(U), preferred Wine(X,Y),
&dIC|U,Y(Z).

Note that this rule allows to generalize, for instance, Rules (9)—(12) of the program
given in Fig. 4. The rest of the program is very similar to the latter one:

bottleChosen(X) V —bottleChosen(X) «— compliantBottle(Y, X);
hasBottleChosen(X) « bottleChosen(Z), compliantBottle(X, Z);

— preferredWine(X,Y'), not hasBottleChosen (X);
i~ bottleChosen(X) [1].

6.4 Prototype Implementation

An experimental prototype for evaluating HEX-programs, called dlvhex, is available and
executable on the Web at

http://www.kr.tuwien.ac.at/research/dlvhex/

Apart from implementing the semantics of HEX-programs, dlvhex supports a number
of built-in functions as well as integrity and weak constraints. Its further development
is work in progress.

The principle behind dlvhex is to represent a framework that integrates a native
answer-set solver—here, DLV [36]—and the external reasoners underlying the external

122 T. Eiter et al.

atoms. Optionally, dlvhex can integrate DLT [10] as a pre-parser to allow for templates
and frame syntax within HEX-programs. Due to the bidirectional nature of external
atoms, they cannot be evaluated prior to calling the answer-set solver. Instead, dlvhex
builds the dependency graph of the HEX-program, identifying minimal sets of nodes that
involve external atoms, which have to be solved by specifically tailored algorithms. This
strategy, which is described in more detail in [16] and [17], relies basically on a modi-
fied version of the well-known splitting-set theorem for ordinary logic programs [40].

The evaluation functions of the external atoms are defined completely independent
from dlvhex by so called plug-ins, which can contain the implementations of several
atoms. The currently available external atoms are the RDF Plug-in, the Description-
Logics Plug-in and the String Plug-in, described below.

The RDF Plug-in. The RDF plug-in currently provides a single external atom, the
&rdf atom, which enables the user to import RDF triples from any RDF knowl-
edge base. It takes a single constant as input, which denotes the RDF source (a file
path or a Web address). The &rdf atom interfaces with the RAPTOR RDF library.

The Description-Logics Plug-in. In order to model dl-programs [18] in terms of HEX-
programs, the Description-Logics Plug-in has been developed. This plug-in in-
cludes three external atoms (these atoms, in accord to the semantics of dl-programs,
also allow for extending a description-logic knowledge base, before submitting a
query, by means of the atoms’ input parameters):

the &dIC atom, which queries a concept (specified by an input parameter of
the atom) and retrieves its individuals;

the &dIR atom, which queries an object property and retrieves its individual
pairs;

the & dIDR atom, which queries a datatype property and retrieves its pairs; and
the & dlConsistent atom, which tests the (possibly extended) description-logic
knowledge base for consistency.

The Description-Logics Plug-in can access OWL ontologies, i.e., description-logic
knowledge bases in the language SHOZN (D), utilizing the RACER [26] reason-
ing engine.

The String Plug-in. The task of the String Plug-in is to realize simple string manipu-
lations.

Currently, dlvhex, together with the presented plug-ins, are available as source pack-
ages. Moreover, a toolkit for developing custom plug-in is supplied as well, embedded
in the GNU auto-tools environment, which takes care for the low-level, system-specific
build process and which allows the plug-in author to concentrate his or her efforts on
the implementation of the plug-in’s actual core functionality.

7 Discussion and Conclusion

We have considered reasoning with rules and ontologies, taking an answer-set program-
ming perspective. A number of approaches for combining rules and ontologies have
been presented so far, and the quest for the Holy Grail of an ideally suited formalism

Reasoning with Rules and Ontologies 123

(which might not exist) is still ongoing. As we have briefly discussed, a number of is-
sues come up when combining rules as in logic programming and ontologies formalized
in classical logic. Bridging the quite different worlds of logic programs and ontologies
has been attempted in different approaches, which may be grouped in “tightly” coupled
and “loosely” coupled approaches.

The approach which is closest in spirit to dl-programs is Rosati’s DL+log formal-
ism [52,53], which extends his previous work [50,51]. In this approach, predicates are
split into ontology predicates and into logic-program (datalog) predicates. A notion of
model of a combined rule and ontology knowledge base is defined using a two-step
reduct in which, in the first step, the ontology predicates are eliminated under the open-
world assumption (OWA) and, in the second step, the negated logic-programming pred-
icates under the closed-world assumption (CWA). As shown by Rosati, the emerging
formalism (which focuses on first-order models under the standard-names assumption),
is decidable provided that conjunctive-query answering over the underlying ontology is
decidable. The main differences between DL+log and dl-programs are as follows:

— DL+log is a tight coupling, while dl-programs provide a loose coupling of rules
and ontologies.

— While extensions of dl-programs to integrate ontologies even in different formats
are straightforward, there is no corresponding counterpart in DL+log.

— The approach of dl-atoms is more flexible for mixing different reasoning modali-
ties, such as consistency checking and logical consequence. In the realm of HEX-
programs, almost arbitrary combinations can be conceived.

— The coupling as realized in dl-programs aims at facilitating interoperability of ex-
isting reasoning systems and software (such as DLV and RACER). On the other
hand, the loose coupling requires a bridging between the two worlds of ontologies
and rules, which has to be provided by the user. In particular, this applies to the
individuals at the instance level.

The development and theoretical study of HEX-programs is ongoing. Algorithms
and techniques for efficient implementation are in an advanced stage of progression. In
a sense, rules are per se a form or knowledge that needs to be exchanged and evaluated
under different semantics. To this end, we are developing an exchange format aimed at
fitting answer-set programming in the RuleML standard. In conclusion, although quite
some efforts have been spent on combining rules and ontologies, there is still a lot of
work to be done.

References

1. A. Analyti, G. Antoniou, C. V. Damdsio, and G. Wagner. Stable Model Theory for Extended
RDF Ontologies. In Proc. Fourth International Semantic Web Conference (ISWC 2005), pp.
21-36, 2005.

2. J. Angele, H. Boley, J. de Bruijn, D. Fensel, P. Hitzler, M. Kifer, R. Krummenacher,
H. Lausen, A. Polleres, and R. Studer. Web Rule Language (WRL), Sept. 2005. W3C
Member Submission, http://www.w3.org/Submission/WRL/.

124

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

T. Eiter et al.

G. Antoniou. Nonmonotonic Rule Systems on Top of Ontology Layers. In Proc. First
International Semantic Web Conference (2002), volume 2342 of Lecture Notes in Computer
Science (LNCS), pp. 394-398, 2002.

. G. Antoniou, C. V. Damdsio, B. Grosof, I. Horrocks, M. Kifer, J. Maluszynski, and

P. F. Patel-Schneider. Combining Rules and Ontologies: A survey. Technical Report
IST506779/Linkoping/13-D3/D/PU/al, Linkoping University, February 2005. IST-2004-
506779 REWERSE Deliverable 13-D3. http://rewerse.net/publications/.

. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors.

The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge
University Press, 2003.

. C. Baral. Knowledge Representation, Reasoning, and Declarative Problem Solving. Cam-

bridge University Press, Cambridge, UK, 2003.

. T. Berners-Lee. ~ Web for Real People, April 2005. Keynote Speech at the 14th

World Wide Web Conference (WWW2005). Slides available at http://www.w3.org/
2005/Talks/0511-keynote-tbl/.

. F. Buccafurri, N. Leone, and P. Rullo. Enhancing Disjunctive Datalog by Constraints. /[EEE

Transactions on Knowledge and Data Engineering, 12(5):845-860, 2000.

. M. Cadoli and M. Lenzerini. The Complexity of Propositional Closed World Reasoning and

Circumscription. Journal of Computer and System Sciences, 43:165-211, April 1994.

F. Calimeri, G. lanni, G. Ielpa, A. Pietramala, and M. C. Santoro. A System with Template
Answer Set Programs. In Proc. Ninth European Conference on Artificial Intelligence (JELIA
2004), volume 3229 of Lecture Notes in AI (LNAI), pp. 693—-697. Springer Verlag, 2004.

M. Dean, G. Schreiber, S. Bechhofer, F. van Harmelen, J. Hendler, 1. Horrocks, D. L.
McGuinness, P. F. Patel-Schneider, and L. A. Stein. OWL Web Ontology Language Ref-
erence, Feb. 2004. W3C Recommendation.

F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. .AL-log: Integrating Datalog and
Description Logics. Journal of Intelligent Information Systems (JI1S), 10(3):227-252, 1998.
The 2005 IEEE International Conference on e-Technology, e-Commerce and e-Service
(EEE-05) contest. http: //www.comp.hkbu.edu.hk/~eee05/contest/.

T. Eiter, G. lanni, R. Schindlauer, and H. Tompits. A Uniform Integration of Higher-Order
Reasoning and External Evaluations in Answer Set Programming. In Proc. 19th Interna-
tional Joint Conference on Artificial Intelligence (1JCAI 2005). Morgan Kaufmann, 2005.

T. Eiter, G. lanni, R. Schindlauer, and H. Tompits. Nonmonotonic Description Logic Pro-
grams: Implementation and Experiments. In F. Baader and A. Voronkov, editors, Proc.
Eleventh International Conference on Logic for Programming, Artificial Intelligence, and
Reasoning (LPAR 2004), number 3452 in LNCS, pp. 511-527. Springer, 2005.

T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. Effective Integration of Declarative Rules
with External Evaluations for Semantic Web Reasoning. In Y. Sure and J. Domingue, editors,
Proc. Third European Semantic Web Conference (ESWC 2006), number 4011 in LNCS, pp.
273-287. Springer, 2006.

T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. Towards Efficient Evaluation of HEX
Programs. In J. Dix and A. Hunter, editors, Proc. Eleventh International Workshop on Non-
monotonic Reasoning (NMR 2006), Answer Set Programming Track, pp. 40—46, 2006.

T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining Answer Set Program-
ming with Description Logics for the Semantic Web. In Proc. Ninth International Confer-
ence on Principles of Knowledge Representation and Reasoning (KR2004), pp. 141-151,
2004.

T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Well-Founded Semantics for De-
scription Logic Programs in the Semantic Web. In Proc. ISWC 2004 Workshop on Rules
and Rule Markup Languages for the Semantic Web (RuleML 2004), volume 3323 of Lecture
Notes in Computer Science (LNCS), pp. 81-97. Springer Verlag, 2004.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Reasoning with Rules and Ontologies 125

W. Faber, N. Leone, and G. Pfeifer. Recursive Aggregates in Disjunctive Logic Programs:
Semantics and Complexity. In Proc. Ninth European Conference on Artificial Intelligence
(JELIA 2004), number 3229 in Lecture Notes in Al (LNAI), pp. 200-212. Springer Verlag,
2004.

The Friend of a Friend (FOAF) Project. http://www. foaf-project.org/.

M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing, 9:365-385, 1991.

M. Gelfond, H. Przymusinska, and T. C. Przymusinski. The Extended Closed World As-
sumption and its Relationship to Parallel Circumscription. In Proc. Fifth ACM SIGACT-
SIGMOD Symposium on Principles of Database Systems (PODS ’86), pp. 133139, 1986.
B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description Logic Programs: Combining
Logic Programs with Description Logics. In Proc. Twelfth International World Wide Web
Conference (WWW 2003), pp. 48-57, 2003.

T. R. Gruber. A Translation Approach to Portable Ontology Specifications. Knowledge
Acquisition, 5:199-220, 1993.

V. Haarslev and R. Méller. RACER System Description. In Proc. First International Joint
Conference on Automated Reasoning (IJCAR 2001), volume 2083 of Lecture Notes in Com-
puter Science (LNCS), pp. 701-705. Springer Verlag, 2001.

P. Hayes. RDF semantics. http://www.w3.org/TR/rdf-mt/.

J. Heflin and H. Munoz-Avila. LCW-Based Agent Planning for the Semantic Web. In Proc.
AAAI Workshop on Ontologies and the Semantic Web, pp. 63-70, 1998.

S. Heymans, D. V. Nieuwenborgh, and D. Vermeir. Nonmonotonic Ontological and Rule-
Based Reasoning with Extended Conceptual Logic Programs. In Proc. Second European
Semantic Web Conference (ESWC 2005), volume 3532 of Lecture Notes in Computer Science
(LNCS), pp. 392-407. Springer Verlag, 2005.

S. Heymans, D. V. Nieuwenborgh, and D. Vermeir. Preferential Reasoning on a Web of
Trust. In Proc. Fourth International Semantic Web Conference (ISWC 2005), volume 3729
of Lecture Notes in Computer Science (LNCS), pp. 368-382. Springer Verlag, 2005.

I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean. SWRL: A
Semantic Web Rule Language Combining OWL and RuleML, May 2004. W3C Member
Submission. http://www.w3 .org/Submission/SWRL/.

I. Horrocks, U. Sattler, and S. Tobies. Practical Reasoning for Very Expressive Description
Logics. Logic Journal of the IGPL, 8(3):239-264, 2000.

ICONS homepage, since 2001. http://www.icons.rodan.pl/.

T. Janhunen, 1. Niemeld, D. Seipel, P. Simons, and J.-H. You. Unfolding Partiality and Dis-
junctions in Stable Model Semantics. ACM Transactions on Computational Logic, 7(1):1-37,
2006.

N. Leone, G. Gottlob, R. Rosati, T. Eiter, W. Faber, M. Fink, G. Greco, G. Ianni, E. Kalka,
D. Lembo, M. Lenzerini, V. Lio, B. Nowicki, M. Ruzzi, W. Staniszkis, and G. Terracina. The
INFOMIX System for Advanced Integration of Incomplete and Inconsistent Data. In Proc.
24th ACM SIGMOD International Conference on Management of Data (SIGMOD 2005), pp.
915-917. ACM Press, 2005.

N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The DLV
System for Knowledge Representation and Reasoning. ACM Transactions on Computational
Logic,2005. To appear. Available athttp: //www.arxiv.org/ps/cs.AI/0211004.
A.Y. Levy and M.-C. Rousset. Combining Horn Rules and Description Logics in CARIN.
Artificial Intelligence, 104(1-2):165-209, 1998.

Y. Lierler. Disjunctive Answer Set Programming via Satisfiability. In Proc. Eighth Inter-
national Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR 2005),
volume 3662 of Lecture Notes in Computer Science (LNCS), pp. 447—451. Springer Verlag,
2005.

126

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.
58.

T. Eiter et al.

V. Lifschitz. Answer Set Planning. In Proc. 16th International Conference on Logic Pro-
gramming (ICLP ’99), pp. 23-37. MIT Press, 1999.

V. Lifschitz and H. Turner. Splitting a Logic Program. In Proc. Eleventh International
Conference on Logic Programming (ICLP ’94), pp. 23-38. MIT Press, 1994.

T. Lukasiewicz. Stratified Probabilistic Description Logic Programs. In Proc. ISWC 2005
Workshop on Uncertainty Reasoning for the Semantic Web, pp. 87-97, 2005.

W. Marek and M. Truszczyriski. Stable Logic Programming - An Alternative Logic Program-
ming Paradigm. In K. Apt, W. Marek, and M. Truszczynski, editors, The Logic Programming
Paradigm, pp. 375-398. Springer Verlag, 1999.

B. Motik, U. Sattler, and R. Studer. Query Answering for OWL-DL with Rules. Journal of
Web Semantics: Science, Services and Agents on the World Wide Web, 3(1):41-60, 2005.

I. Niemeld. Logic Programs with Stable Model Semantics as a Constraint Programming
Paradigm. Annals of Mathematics and Artificial Intelligence, 25(3-4):241-273, 1999.

I. Niemeld, P. Simons, and T. Soininen. Stable Model Semantics of Weight Constraint Rules.
In Proc. Fifth International Conference on Logic Programming and Nonmonotonic Reason-
ing (LPNMR ’99), volume 1730 of Lecture Notes in AI (LNAI), pp. 107-116. Springer Verlag,
1999.

J. Z. Pan, E. Franconi, S. Tessaris, G. Stamou, V. Tzouvaras, L. Serafini, I. R. Horrocks,
and B. Glimm. Specification of Coordination of Rule and Ontology Languages. Project
Deliverable D2.5.1, KnowledgeWeb NoE, June 2004.

P. F. Patel-Schneider, P. Hayes, and I. Horrocks. OWL Web Ontology Language Semantics
and Abstract Syntax, Feb. 2004. W3C Recommendation.

D. Poole. A Logical Framework for Default Reasoning. Artificial Intelligence, 36:27-47,
1988.

A. Rainer. Web Service Composition under Answer Set Programming. In Proc. KI 2005
Workshop ”Planen, Scheduling und Konfigurieren, Entwerfen” (PuK 2005), 2005.

R. Rosati. Towards Expressive KR Systems Integrating Datalog and Description Logics:
Preliminary Report. In Proc. 1999 International Workshop on Description Logics (DL ’99),
volume 22 of CEUR Workshop Proceedings, pp. 160—164. CEUR-WS.org, 1999.

R. Rosati. On the Decidability and Complexity of Integrating Ontologies and Rules. Journal
of Web Semantics, 3(1):61-73, 2005.

R. Rosati. DL+log: Tight Integration of Description Logics and Disjunctive Datalog. In
Proc. Tenth International Conference on Principles of Knowledge Representation and Rea-
soning (KR 2006), pp. 68-78. AAAI Press, 2006.

R. Rosati. Reasoning with Rules and Ontologies. In P. Barahona, F. Bry, E. Franconi, U. Sat-
tler, and N. Henze, editors, Reasoning Web, Second International Summer School 2006, Liss-
abon, Portugal, September 25-29, 2006, Tutorial Lectures, Lecture Notes in Computer Sci-
ence (LNCS). Springer Verlag, 2006. This volume.

M. Sintek and S. Decker. TRIPLE - A Query, Inference, and Transformation Language for
the Semantic Web. In Proc. First International Semantic Web Conference (ISWC 2002),
volume 2342 of Lecture Notes in Computer Science (LNCS), pp. 364-378, 2002.

D. Tsarkov and I. Horrocks. Fact++ Description Logic Reasoner: System Description. In
Proc. Third International Joint Conference on Automated Reasoning (IJCAR 2006), 2006.
A. Van Gelder, K. A. Ross, and J. S. Schlipf. The Well-Founded Semantics for General Logic
Programs. Journal of the ACM, 38(3):620-650, 1991.

W3C. The Resource Description Framework. http://www.w3 .org/RDF/.

K. Wang, G. Antoniou, R. W. Topor, and A. Sattar. Merging and Aligning Ontologies in
dl-Programs. In Proc. First International Conference on Rules and Rule Markup Languages
for the Semantic Web (RuleML 2005), pp. 160-171, 2005.

59.

60.

61.
62.
63.

Reasoning with Rules and Ontologies 127

K. Wang, D. Billington, J. Blee, and G. Antoniou. Combining Description Logic and Defea-
sible Logic for the Semantic Web. In Proc. ISWC 2004 Workshop on Rules and Rule Markup
Languages for the Semantic Web (RuleML 2004), volume 3323 of Lecture Notes in Computer
Science (LNCS), pp. 170-181. Springer Verlag, 2004.

ASPLIB: The Answer Set Programming Satisfiability Library. http://dit.unitn.
it/~wasp/Solvers/index.html.

WASP homepage, since 2002. http://wasp.unime.it/.

The Wine Ontology. http://www.w3.org/TR/owl-guide/wine.rdf.

S. Woltran. Answer Set Programming: Model Applications and Proofs-of-Concept. Tech-
nical Report WP5, Working Group on Answer Set Programming (WASP, IST-FET-2001-
37004), July 2005. Available at http://www.kr.tuwien.ac.at/projects/
WASP/report.html.

Integrating Ontologies and Rules:
Semantic and Computational Issues

Riccardo Rosati

Dipartimento di Informatica e Sistemistica
Universita di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italy

rosati@dis.uniromal.it

Abstract. We present some recent results on the definition of logic-
based systems integrating ontologies and rules. In particular, we take
into account ontologies expressed in Description Logics and rules ex-
pressed in Datalog (and its nonmonotonic extensions). We first intro-
duce the main issues that arise in the integration of ontologies and rules.
In particular, we focus on the following aspects: (i) from the semantic
viewpoint, ontologies are based on open-world semantics, while rules are
typically interpreted under closed-world semantics. This semantic dis-
crepancy constitutes an important obstacle for the definition of a
meaningful combination of ontologies and rules; (ii) from the reasoning
viewpoint, the interaction between an ontology and a rule component is
very hard to handle, and does not preserve decidability and computa-
tional properties: e.g., starting from an ontology in which reasoning is
decidable and a rule base in which reasoning is decidable, reasoning in
the formal system obtained by integrating the two components may not
be a decidable problem. Then, we briefly survey the main approaches
for the integration of ontologies and rules, with special emphasis on how
they deal with the above mentioned issues, and present in detail one of
such approaches, i.e., DL+log. Finally, we illustrate the main open prob-
lems in this research area, pointing out what still prevents us from the
development of both effective and expressive systems able to integrate
ontologies and rules.

1 Introduction

1.1 Ontologies and Description Logics

The integration of ontologies and rules has recently received considerable atten-
tion in the research on ontologies and the Semantic Web (see e.g.,[24,2]). De-
scription Logics (DLs) [6] are currently playing a central role in this field. DLs
are a family of knowledge representation formalisms based on first-order logic (in
fact, almost all DLs coincide with decidable fragments of function-free first-order
logic with equality) and exhibiting well-understood computational properties. In
the last years, a significant body of the Semantic Web research was devoted to
defining a suitable language for ontology modeling [33]. In 2004, this endeavor

P. Barahona et al. (Eds.): Reasoning Web 2006, LNCS 4126, pp. 128-151, 2006.
(© Springer-Verlag Berlin Heidelberg 2006

Integrating Ontologies and Rules: Semantic and Computational Issues 129

resulted in the Web Ontology Language (OWL). OWL is based on Description
Logics, and has successfully been applied to numerous problems in computer
science, such as information integration or metadata management. Prototypes
of OWL reasoners, such as RACER, FaCT++, Pellet, or KAON2, have been
implemented and applied in research projects; commercial implementations and
projects using them are currently emerging.

1.2 Limitations of Current Ontology Formalisms

However, the experience in building practical applications has revealed several
shortcomings of OWL and, in general, of Description Logics. In particular, the
typical expressiveness of DLs does not allow for addressing the following aspects:

— the possibility of defining predicates of arbitrary arity (not just unary and
binary)

— the use of variable quantification beyond the tree-like structure of DL con-
cepts (many DLs actually correspond to subsets of the two-variable fragment
of first-order logic)

— the possibility of formulating expressive queries over DL knowledge bases
(beyond concept subsumption and instance checking)

— the possibility of formalizing various forms of closed-world reasoning over
DL knowledge bases

— more generally, the possibility of expressing forms of nonmonotonic knowl-
edge, like default rules [34]

The issue of how to overcome these limitations of OWL and DLs is currently
receiving a lot of attention in the Semantic Web community [1]. In this respect,
we observe that several of the representational abilities which are missing in DLs
require nonmonotonicity of the underlying logical formalism. This is in contrast
with the well-known monotonic nature of classical first-order logic, which cor-
responds to the following property: if a theory T entails a conclusion ¢, then,
for every formula 1, the theory T'U {+} entails ¢. Such a property dos not hold
anymore in the presence of closed-world knowledge and default knowledge [34,7].

This implies that the attempt to extend the expressive abilites of DLs, in order
to fully overcome the above limitations, requires to leave the realm of classical
first-order logic, and to look at nonmonotonic logic.

1.3 Rule-Based Knowledge Representation

Almost all the kinds of knowledge that cannot be formally addressed in a clas-
sical, first-order logic setting have a “rule-like” form, i.e., can be expressed by
statements of the form “if the precondition v holds then the conclusion ¢ holds”,
where the precondition and the conclusion are logical properties.

However, such a piece of knowledge cannot simply be formalized through the
standard material implication of classical logic: in other words, it is not possible
to capture the intended meaning of the above statement by an implication in
classical first-order logic of the form ¢ — ¢.

130 R. Rosati

In this respect, a very relevant role is played by research in logic programming.
In fact, logic program rules are implications with a non-standard semantics. And,
in the context of ontologies, nonmonotonic extensions of logic programming are
of particular interest [7].

Therefore, rule-based formalisms grounded in logic programming have repeat-
edly been proposed as a possible solution to overcome the above limitations, so
adding a rule layer on top of OWL is nowadays seen as the most important task
in the development of the Semantic Web language stack. The Rule Interchange
Format (RIF) working group of the World Wide Web Consortium (W3C) is
currently working on standardizing such a language.

Most of the proposals in this field focus on logic programs expressed in Datalog
(and its nonmonotonic extensions) [14]. With respect to DLs, Datalog allows for
using predicates of arbitrary arity, the explicit use of variables, and the ability
of expressing more powerful queries. Moreover, its nonmonotonic features (in
particular, the negation-as-failure operator not) allow for expressing default rules
and forms of closed-world reasoning.

1.4 Integrating DLs and Rules: Main Issues

Many semantic and computational problems have emerged in the combination
of DLs and rule-based representation formalisms. Among them, we concentrate
on the following main issues/goals:

(1) OWA vs. CWA: DLs are fragments of first-order logic (FOL), hence their
semantics is based on the Open World Assumption (OWA) of classical logic,
while rules are based on a Closed World Assumption (CWA), imposed by the
different semantics for logic programming and deductive databases (which
formalize various notions of information closure). How to integrate the OWA
of DLs and the CWA of rules in a “proper” way? i.e., how to merge monotonic
and nonmonotonic logical subsystems from a semantic viewpoint?

(2) UNA vs. non-UNA: some DLs, in particular the ones specifically tailored for
the Semantic Web, i.e., OWL and OWL-DL, are not based on the Unique
Name Assumption (UNA) (we recall that the UNA imposes that different
terms denote different objects). On the other hand, the standard semantics
of Datalog rules is based on the UNA (see e.g. [12] for a discussion on this
semantic discrepancy). How to define a non-UNA-based semantics for DLs
and rules? and most importantly, is it possible to reason under the non-UNA-
based semantics by exploiting standard (i.e., UNA-based) Datalog engines?

(3) decidability preservation: as shown by the first studies in this field [28], decid-
ability (and complexity) of reasoning is a crucial issue in systems combining
DL knowledge bases and Datalog rules. In fact, in general this combination
does not preserve decidability, i.e., starting from a DL knowledge base in
which reasoning is decidable and a set of rules in which reasoning is de-
cidable, reasoning in the knowledge base obtained by integrating these two
components may not be a decidable problem.

(4) modularity of reasoning: can reasoning in DL knowledge bases augmented
with rules be performed in a modular way, strongly separating reasoning

Integrating Ontologies and Rules: Semantic and Computational Issues 131

about the DL component and reasoning about the rule component? This
is a very desirable property, since it allows for defining reasoning tech-
niques (and engines) on top of deductive methods (and implemented sys-
tems) developed separately for DLs [6] and for Datalog and its nonmonotonic
extensions [16].

1.5 Structure of the Paper

The paper is structured in the following way. We start by briefly introducing
Description Logics in Section 2, and Datalog and its nonmonotonic extensions
in Section 3. Then, in Section 4 we analyze the main issues that arise when
integrating Description Logics and rules. In Section 5 we review the main ap-
proaches to the integration of ontologies and Datalog rules. Then, in Section 6
we present DL+log, one of the most powerful formalisms integrating Descrit-
pion Logics and Datalog rules: in particular, we show how DL+log deals with
the main issues previously discussed. Finally, in Section 7 we briefly illustate
some of the main open problems towards the integration of Description Logics
and Datalog rules.

2 Description Logics

We start by introducing Description Logics. For a more detailed introduction to
this topic, we refer the reader to [6].

Description Logics (DLs) are logics that represent the domain of interest in
terms of concepts, denoting sets of objects, and roles, denoting binary relations
between (instances of) concepts. Complex concept and role expressions are con-
structed starting from a set of atomic concepts and roles by applying suitable
constructs.

Different DLs allow for different constructs. Properties of concepts and roles
are specified through inclusion assertions, stating that every instance of a concept
(respectively, role) is also an instance of another concept (respectively, role).

As an example of a DL, in the following we formally introduce ALC, which
actually constitutes a subset of the DLs of the OWL family defined as ontology
languages.

2.1 Syntax

In ALC, concepts and roles are formed according to the following syntax:
C:T|J_|A|Cl|_|02|01UCQ|_'C|3PC|VPC

where A denotes an atomic concept, P denotes an atomic role, and Cy, Cy denote
general concept expressions.

A DL knowledge base (KB) IC = (7, .A) represents the domain of interest in
terms of two components, a TBox 7T, specifying the intensional knowledge, and
an ABoz A, specifying extensional knowledge.

132 R. Rosati

A TBox is formed by a set of inclusion assertions of the form
C1 ECy

where C; and Cy are general concepts. As we said before, such an inclusion
assertion expresses that all instances of concept C; are also instances of concept
Cs.

An ABox is formed by a set of membership assertions on atomic concepts and
on atomic roles, of the form

C(a), P(a,b)

stating respectively that the object denoted by the constant a is an instance of
the concept C' and that the pair of objects denoted by the pair of constants (a, b)
is an instance of the role P.

2.2 Semantics

The semantics of a DL is given in terms of standard first-order interpretations.
Formally, a DL-interpretation T = (A%,-T) consists of an interpretation domain
AT and an interpretation function -~ defined as follows. First, Z assigns to each
atomic concept A a subset A% of AZ, and to each role P a binary relation P*
over AZ:

T = AT
1T=9
AT c AT
P c AT x AT

Based on the above interpretation of atomic predicates, Z assigns a subset of
AT to general concept expression. For the constructs of ALC, the interpretation
of general concepts is defined inductively as follows:

0T = AT\ T

c,nct=ctnct

cucti=ctuct
IP.CT = {d e AT |3d'.(d,d') € PT and d' € CT}
VP.CT = {d € AT |Vd'.(d,d') € P* implies d' € C7}

A concept C is satisfiable if there exists an interpretation Z such that C # (),
otherwise C' is unsatisfiable. An interpretation Z is a model of a concept C if 7
satisfies C.

A DL-interpretation Z is a model of an inclusion assertion C; C Cy, if
ct cct.

Integrating Ontologies and Rules: Semantic and Computational Issues 133

To specify the semantics of membership assertions, we extend the interpreta-
tion function to constants, by assigning to each constant a an object aZ € AT A
DL-interpretation Z is a model of a membership assertion C'(a), (resp., P(a,b))
if aZ € C7 (resp., (aZ,b%) € PT).

Given an (inclusion, or membership) assertion «, and a DL-interpretation
7, we denote by Z | « the fact that Z is a model of a. A model of a KB
K = (7,A) is a DL-interpretation Z that is a model of all assertions in 7 and
A. A KB is satisfiable if it has at least one model. A KB K entails an assertion
a, written K | «, if all models of I are also models of «. Analogously, a TBox
7 entails an assertion «, written 7 | «, if all models of 7 are also models
of a.

Observe that ALC (and, in practice, every DL) is actually a fragment of
function-free first-order logic, with a special syntax which avoids the explicit use
of variable symbols. In fact, it is immediate to verify that a DL knowledge base
K is semantically equivalent to a FOL theory FO(K) in which each assertion in
the knowledge base is expressed by a first-order sentence (for details on such a
translation see [6]). For instance, the TBox inclusion assertion

A1 M 3P1.A2 E VPQ.Ag (] _\A4
is equivalent to the first-order sentence
Va.Ar(x) A (Jy.Pi(z,y) A A2(y)) — (Vz2.Pa(z,2) — Asz(2)) V 2A4(x)

Finally, we remark that, due to the above FOL semantics, DLs are interpreted
over an unbound (possibly infinite) domain. Moreover, unique names are not
always assumed?.

3 Disjunctive Datalog

In this section be briefy recall disjunctive Datalog [14], denoted by Datalog ™,
which is the well-known nonmonotonic extension of Datalog with negation as
failure and disjunction.

3.1 Syntax

We start from a predicate alphabet, a constant alphabet, and a variable alphabet.
An atom is an expression of the form p(X), where p is a predicate of arity n
and X is a n-tuple of variables and constants. If no variable symbol occurs in X,
then p(X) is called a ground atom (or fact). A Datalog” rule R is an expression
of the form

p1(X1) V... Vpa(Xy) «— (Y1), ..., rm(Yim), not s1(W1), ..., not sp(Wy)

! We recall that, if we enforce the unique name assumption on constants, then the
interpretation a? of each constant @ must be such that, for each constant b different
from a, b* # o [6].

2 Even though some DLs are based on the UNA, the most expressive ones, like the
ones in the OWL family, are not.

134 R. Rosati

such that n > 0, m > 0, & > 0, each p;(X;), m:(Y:), s;(W;) is an atom
and every variable occurring in R must appear in at least one of the atoms
r1(Y1), ..., 7m(Yy). This last condition is known as the Datalog safeness condi-
tion for variables. The variables occurring in the atoms p;(X1),...,pn(X,) are
called the head variables of R. If n =0, we call R a constraint.

A a Datalog™" program is a set of Datalog™" rules. If, for all R € P, n < 1,
P is called a Datalog' program. If, for all R € P, k = 0, P is called a positive
disjunctive Datalog program. If, for all R € P, n <1 and k = 0, P is called a
positive Datalog program. If there are no occurrences of variable symbols in a
rule R, then R is called a ground rule. A ground program is a program containing
only ground rules.

3.2 Semantics

The semantics of disjunctive Datalog is given in terms of stable models of a
program P, which we recall below.

The ground instantiation of P, denoted by G(P), is the program obtained
from P by replacing every rule R in P with the set of ground rules obtained by
applying all possible substitutions of variables in R with constants occurring in
P (such a set of constants is called the Herbrand universe of P).

We denote by HB(P) the Herbrand base of P, i.e. the set of all ground in-
stantiations of predicates occurring in P over the Herbrand universe of P.

A Datalog interpretation I of P is a subset of HB(P). I satisfies a positive
ground rule

PLV . o VP — T, T (1)

if the following condition holds: if each atom in {ri,...,r,} belongs to I, then
at least one atom p; belongs to I.

I is a model of P if I satisfies each rule in G(P). A model of P is minimal if
it does not properly contain any other model of P.

Given a Datalog interpretation I C HB(P), the GL-reduct of P with respect
to I (denoted as GL(P,I)) is the program obtained from G(P) by removing all
clauses of the form (1) such that there exists s; € I forsome j € {1,...,k}, and by
removing all negated predicates of the form not s; from the remaining clauses.

A Datalog interpretation I C HB(P) is a stable model of P if I is a minimal
model of GL(G(P),I).

We say that a program P entails a ground query (i.e., a ground literal predi-
cate) ¢(a), denoted as P = ¢(a), if ¢(@) belongs to all stable models of P.

We remark that, based on the above semantics, every disjunctive Datalog pro-
gram is interpreted over a finite domain, which coincides with the set of constants
occurring in the program. Moreover, every Datalog interpretation enforces the
unique name assumption (different constants are interpreted as different objects).

4 Integrating DLs and Rules: Main Issues

In this section we address the main issues arising when trying to combine DLs
and (disjunctive) Datalog in a single formalism.

Integrating Ontologies and Rules: Semantic and Computational Issues 135

Syntax. From the syntactic viewpoint, integrating a DL with (disjunctive) Dat-
alog simply means the possibility of writing a “hybrid” knowledge base contain-
ing a TBox, an ABox, and a set of Datalog rules.

Semantics. From the semantic viewpoint, the meaning of such an integrated
knowledge base can be provided in two ways:

1. the whole knowledge base is considered as a first-order theory, by interpret-
ing Datalog rules as first-order implications. More specifically, let R be the
following Datalog " rule:

p1(X1,e1) V. Vpa(Xn, en) —
rl 1/ladl)7'''7""771(}/7717d’l”l’7/)7
s1(Z1,e1)y. .., 86(Zx,),
not u1 (W1, f1), ..., not up(Wh, fr)

where each X;, Y;, Z;, W; is a set of variables and each ¢;, d;, ¢;, f; is a set
of constants. Then, we denote by FO(R) the first-order sentence
VZq,... s Ty Yps oo s Yy Zly e vs Zhy Wiy en ., Wh.

7"1(?1, dl) VANIAN ’I’m(ym,dm)/\

81(51, 61) VANAAN Sk(fk, ek)/\

jul(wlv fl) AN juh<wha fh) - p1(51, Cl) V... vpn(jna Cn)
and, given a Datalog™" program P, we denote by FO(P) the set of first-order
sentences { FO(R) | R € P}.

Finally, the semantics of a knowledge base (K, P) composed of a DL-KB
K and a Datalog program P is given by the first-order theory corresponding
to the union of FO(P) and the first-order translation FO(K) of K.

While the above semantic account has the advantage of being clear and
easy to define, it has the drawback of not being conservative with respect
to the semantics of Datalog rules. In other words, the meaning of a Datalog
program P in the new semantics is different from its meaning according to
the standard Datalog semantics (the CWA of Datalog is missing in the new
semantics).

2. the semantics is defined in a way such that it is a “conservative extension”
of both the DL and Datalog. However, this is not as immediate as the above
semantic account, due to the different semantic nature of the two formalisms:
in fact, one has to simultaneously deal with two semantic discrepancies: the
OWA of DLs and the CWA of Datalog on the one side, and the UNA of
Datalog and the absence of the UNA of (some) DLs on the other side. In
Section 6 we will define such a semantics.

Reasoning. From the reasoning perspective, an important aspect is the “degree
of integration” of the two components (the DL-KB and the Datalog program).
Indeed, as we will explain in Section 5, the complexity of reasoning in systems
combining DLs and rules is directly related to such a degree of integration.
In particular, it is well-known that the “full” interaction between a DL-KB
and a Datalog program leads to undecidability of reasoning under the above

136 R. Rosati

presented FOL semantics, even for extremely simple DLs [28]. On the other side
of the spectrum, rules may not interact at all with the DL-KB, and of course
this kind of (uninteresting) integration is not problematic at all with respect to
the reasoning task, since the two components can be processed separately by
standard (DL and Datalog) reasoners.

Obviously, in order to represent some kind of significant interaction, the DL
KB and the rules have to share some predicate symbols. A measure of the degree
of interaction between the two components depends on these shared predicates,
and on how they can be used within DL statements and rules.

More specifically, the alphabet of predicates is divided into DL predicates and
Datalog predicates, where Datalog predicates are the ones that do not occur in
the DL-KB, while DL predicates may occur both in the DL-KB and in rules.
Then:

— the full interaction does not make any assumption on the form of rules based
on the above classification of predicates;

— the loose interaction imposes some limitations on the use of DL predicates
in rules.

For instance, as we will illustrate in Section 5, a common approach to the
loose integration of DLs and rules is realized through the so-called DL-safeness
condition for Datalog rules. This is a syntactic condition that can be expressed
as follows: every variable occurring in an atom with a DL predicate must occur
in a atom with a Datalog predicate in the body of the rule. Such a condition
is sufficient to allow for a nice computational behaviour of reasoning, but has
the drawback of restricting the expressiveness of the combined language thus
defined. E.g., DL-safe rules are not able to express arbitrary conjunctive queries
to the DL-KB. Conjunctive queries correspond to a simple form of non-recursive
Datalog rules, are computable in many DLs, and there are known algorithms for
conjunctive query algorithms in many DLs [9,32]. Therefore, DL-safeness seems
to imply a too severe limitation in the expressiveness of rules.

Finally, another measure of the degree of integration lies in the direction of the
information flow between DL-KB and rules, which may be either bidirectional
(from the DL-KB to the rules and vice versa), or unidirectional (only from the
DL-KB to the rules). In the latter case, the presence of rules does not affect the
semantics of DL predicates. Often, the restriction to the unidirectional flow is
realized through the syntactic restriction that DL predicates may not occur in
the head of rules (they can only occur in the body of rules).

We conclude this section with two examples of knowledge bases combining
DLs and rules.

Ezample 1. Let B = (K, P) be the knowledge base reported in Figure 1, where
the DL-KB C defines an ontology about persons, and the disjunctive Datalog
program P defines nonmonotonic rules about students. For the sake of readabil-
ity, we denote DL predicates by uppercase names, and denote Datalog predicates
by lowercase names.

It is immediate to verify that B satisfies the DL-safe condition described
above. n

Integrating Ontologies and Rules: Semantic and Computational Issues 137

PERSON C dFATHER™ .MALE
MALE C PERSON

FEMALE C PERSON
FEMALEC -MALFE
MALE(Bob)

PERSON(Mary)
PERSON(Paul)

(a) DL-KB K (ontology about persons)

boy(X) « enrolled(X, cl), PERSON(X), not girl(X) [R1]
girl(X) < enrolled(X, c2), PERSON(X) [R2]

boy(X) V girl(X) < enrolled(X, ¢3), PERSON(X) [R3]
FEMALE(X) — girl(X) [RA]

MALE(X) < boy(X) [R5]

enrolled(Paul, c1)

enrolled(Mary, c1)

enrolled(Mary, c2)

enrolled(Bob, c3)

(b) disjunctive Datalog program P (rules about students)

Fig. 1. Knowledge base B = (K, P) of Example 1

RICHT UNMARRIED C 3WANTS-TO-MARRY™. T
UNMARRIED(Mary)
UNMARRIED(Joe)

(a) DL-KB K

happy(X) «— famous(X), WANTS-TO-MARRY(Y, X) [R1]
RICH(X) « famous(X), not scientist(X) [R2]
famous(Mary)

famous(Paul)

famous(Joe)

scientist(Joe)

(b) disjunctive Datalog program P

Fig. 2. Knowledge base B = (K, P) of Example 2

Ezample 2. Let B = (K, P) be the knowledge base reported in Figure 2.

Again, DL predicates are denoted by uppercase names, while Datalog predi-
cates are denoted by lowercase names. In this case, the rules in P (in particular,
rule R1) do not satisfy the DL-safeness condition. n

138 R. Rosati

5 A Brief State of the Art

In this section we briefly survey recent work in integrating ontologies and rules.?
We divide such studies in two main streams: (i) approaches dealing with forms
of DL-safe (and, more generally, loose) interaction between DL-KBs and rules;
(ii) approaches concerning forms of “non-DL-safe” (or tight) interaction.

5.1 Loose Integration

The first formal proposal for the integration of Description Logics and rules
is AL-log [13]. AL-log is a framework which integrates KBs expressed in the
description logic ALC and positive Datalog programs. Then, disjunctive AL-log
was proposed in [35] as an extension of AL-log, based on the use of Datalog™
instead of positive Datalog, and on the possibility of using binary predicates
(roles) besides unary predicates (concepts) in rules. Such approaches realize a
form of loose integration between DLs and Datalog that precisely corresponds
to the DL-safeness condition described in the previous section. Moreover, both
in AL-log and in disjunctive AL-log DL predicates can occur only in the bodies
of rules, which forces the information flow to be unidirectional.

The framework of AL-log has been extended in a different way in [30]. There,
the problem of extending OWL-DL with positive Datalog programs is analyzed.
Again, the interaction between OWL-DL and rules is restricted through the DL-
safeness condition. With respect to disjunctive AL-log, in [30] a more expressive
DL and a less expressive rule language (interpreted under first-order semantics)
are adopted: moreover, the information flow is bidirectional, i.e., DL predicates
may appear in the head of rules.

All the above approaches based on DL-safeness have been generalized in [36]
to the integration of arbitrary, decidable, first-order theories and disjunctive
Datalog rules. This paper establishes an important computational result, which
states that the DL-safe based integration preserves (under very general condi-
tions) decidability of reasoning.

The work presented in [21] can also be seen as an approach based on a form of
safe interaction between the DL-KB and the rules: in particular, a rule language
is defined such that it is possible to encode a set of rules into a semantically
equivalent DL-KB. As a consequence, such a rule language is very restricted.

A different approach is presented in [23,22], which proposes Conceptual Logic
Programming (CLP), an extension of answer set programming (i.e., Datalog™")
towards infinite domains. In order to keep reasoning decidable, a syntactic re-
striction on CLP program rules is imposed. This approach is related to integrat-
ing DLs and rules, since the authors also show that CLPs can embed expressive
DL-KBs, which in turn implies decidability of adding CLP rules to such DLs.
However, the syntactic restriction on CLP rules, whose purpose is to impose a
“forest-like” structure to the models of the program, is different from the safeness
conditions analyzed so far, which makes it impossible to compare this approach
with the studies previously mentioned.

3 For other surveys on this topic see, e.g., [5,15].

Integrating Ontologies and Rules: Semantic and Computational Issues 139

Another approach for extending DLs with Datalog™ rules is presented in
[17,18]. Differently from the other approaches above described, this proposal
allows for specifying, in rule bodies, queries to the DL component, where every
query also allows for specifying an input from the rule component, and thus for
an information flow from the rule component to the DL-KB. The meaning of
such queries in rule bodies is given at the meta-level, through the notion of skep-
tical entailment in the DL-KB. Thus, from the semantic viewpoint, this form of
interaction-via-entailment between the two components is more restricted than
in the approaches previously mentioned; on the other hand, such an increased
separation in principle allows for more modular reasoning methods, which are
able to completely separate reasoning about the DL-KB and reasoning about
the Datalog program. For a more detailed description of this approach see [15].

Finally, [3,2,4] present approaches for the combination of defeasible reasoning
with Description Logics, under a safe interaction-via-entailment scheme which is
semantically analogous to the one proposed in [17]. Besides the differences with
the studies on nonmonotonic extensions of DL-KBs previously mentioned due
to the semantics of nonmonotonic rules, a main characteristic of these proposals
consists in the fact the information flow is unidirectional, i.e., it only goes from
the DL-KB to the rules.

5.2 Tight Integration

Research in non-safe interaction of DLs and rules actually started with the work
on CARIN [26,27,28], which established very important decidability and undecid-
ability results concerning the integration of DL-KBs and rules. Roughly speak-
ing, such results clearly indicate that, in case of unrestricted interaction between
a DL-KB and a set of rules, decidability of reasoning holds only if at least one
of the two components has very limited expressive power: e.g., in order to re-
tain decidability of reasoning, allowing recursion in rules imposes very severe
restrictions on the expressiveness of DL-KB.

Then, we remark that query answering over a knowledge base can be seen as a
problem of reasoning in a DL-KB augmented with rules which encode the query.
In this respect, an important undecidability result concerning query answering
over databases with integrity constraints is reported in [10]. More precisely, it
is shown that answering recursive Datalog queries over a database with simple
integrity constraints (keys and foreign keys), interpreted as a knowledge base,
i.e., under an open-world assumption, is undecidable. This setting also can be
viewed as a DL-KB with non-DL-safe interaction between a knowledge base
(database with integrity constraints) and a rule component (the query).

As already observed, it is difficult to provide a good semantic account for non-
safe interaction between DL-KBs and nonmonotonic rules, due to the classical,
open-world semantics of DL-KBs, and the closed-world assumption underlying
nonmonotonic systems. For instance, [29] illustrates the problems in providing a
semantic account for non-safe interaction of ontologies and Datalog " programs.

Finally, another recent proposals in this field is SWRL [24], a non-safe ap-
proach to the integration of rules and DL-KBs in which rules are interpreted

140 R. Rosati

under the classical FOL semantics. The addition of this kind of rules to DLs
leads to undecidability of reasoning.

5.3 Loose vs. Tight Integration

Summarizing, what emerges from the studies in the integration of DL-KBs and
rules is that while, on the one hand, a safe form of interaction between DLs
and rules generally allows for decidable reasoning and nice computational prop-
erties, on the other hand, the results concerning non-safe interaction indicate
that a tight connection between the two components can only be obtained at
the price of severely restricting the expressive power of either the DL-KB or the
rules.

In the next section we present in detail DL +log, which is currently one of the
most expressive and decidable combinations of Description Logics and disjunc-
tive Datalog. DL +log overcomes the DL-safeness condition to obtain a tighter
form of interaction between DLs and rules.

6 The DL +log Approach

In this section we introduce DL +log (we refer to [38] for more details).

6.1 Syntax
We start from three mutually disjoint predicate alphabets:

— an alphabet of concept names Y¢;
— an alphabet of role names Xg;
— an alphabet of Datalog predicates X'p.

We call a predicate p a DL predicate if either p € X or p € Xz.* Then, we
denote by C a countably infinite alphabet of constant names.

An atom is an expression of the form p(X), where p is a predicate of arity n
and X is a n-tuple of variables and constants.® If no variable symbol occurs in
X, then p(X) is called a ground atom (or fact). If p € Yo U X'g, the atom is
called a DL-atom, while if p € X'p, it is called a Datalog atom.

To define a DL +log knowledge base, we can start from any description logic
DL: in other words, the construction defined in the following is parametric with
respect to the description logic used to express the DL-KB.

Definition 1. Given a description logic DL, a DL+log-knowledge base B is a
pair (K, P), where:

— K is a DL-KB, i.e., a pair (T, A) where T is the TBox and A is the ABox;
— P is a set of Datalog™" rules, where each rule R has the form

4 For DLs which allow for using equality, we assume that the equality predicate is a
DL predicate.
5 As usual, atoms involving equalities are written using the infix notation ¢; = t».

Integrating Ontologies and Rules: Semantic and Computational Issues 141

pl(Xl) V... Vpn(Xn) — Tl(Y1>, - 7’I”T,l(Y;n),Sl(Zl), .. .,Sk(Zk,)7
not uy (Wh), ..., not up(Wh)

such that n >0, m >0, k>0, h >0, each p;(X;), r:(Ys), :(Z;), uy(W;) is
an atom and:
e cach p; is either a DL predicate or a Datalog predicate;
e cach r;, u; is a Datalog predicate;
e cach s; is a DL predicate;
e (Datalog safeness) every variable occurring in R must appear in at least
one of the atoms r1(Y1),...,rm(Yim),51(Z1), ..., sx(Zk);
o (weak safeness) every head variable of R must appear in at least one of
the atoms r1(Y1), ..., rm(Ym).

We remark that the above notion of weak safeness allows for the presence of
variables that only occur in DL-atoms in the body of R. On the other hand, the
notion of DL-safeness of variables adopted in previous approaches [35,31,36] can
be expressed as follows: every variable of R must appear in at least one of the
atoms r1(Y1),...,7m (Y). Therefore, DL-safeness forces every variable of R to
occur also in the Datalog atoms in the body of R, while weak safeness allows for
the presence of variables that only occur in DL-atoms in the body of R.

Without loss of generality, in the rest of the paper we assume that in a
DL+log-KB (K, P) all constants occurring in K also occur in P.

6.2 Semantics

We now define a semantics for DL +log-KBs which is a “conservative extension”
of both the open-world semantics of DLs and the closed-world semantics of
disjunctive Datalog.

Given an interpretation Z and a predicate alphabet X', we denote by Ty
the projection of Z to X, i.e., Zx is obtained from Z by restricting it to the
interpretation of the predicates in Y.

Given a set of constants C, the ground instantiation of P with respect to C,
denoted by gr(P,C), is the program obtained from P by replacing every rule
R in P with the set of rules obtained by applying all possible substitutions of
variables in R with constants in C.

Given an interpretation Z of an alphabet of predicates X' C X, and a ground
program P, over the predicates in X, the projection of Py with respect to Z,
denoted by II(Py,Z), is the ground program obtained from P, as follows. For
each rule R € Py:

delete R if there exists an atom r(¢) in the head of R such that » € X’ and
tf e rt;

— delete each atom 7(t) in the head of R such that r € ¥’ and t* ¢ r7;

delete R if there exists an atom r(¢) in the body of R such that r € X’ and
tr & rt;

delete each atom 7(t) in the body of R such that r € X’ and % € 7Z;

142 R. Rosati

Informally, the projection of P, with respect to Z corresponds to evaluating
Py with respect to Z, thus eliminating from P, every atom whose predicate is
interpreted in Z. Thus, when Y/ = YU Xg, all occurrences of DL predicates are
eliminated in the projection of P, with respect to Z, according to the evaluation
in Z of the atoms with DL predicates occurring in Py.

Then, we introduce the notions of minimal model and stable model for
Datalog™ in the absence of the UNA.6

Given two interpretations Zi, Zs of the set of predicates 3 and the set of
constants C, we write Z; Cx ¢ Zs if (i) for each p € X and for each tuple ¢ of
constants from C, if t71 € p?t then t¥2 € p?2, and (ii) there exist p € X and
tuple t of constants from C such that t7* ¢ p’* and %2 € p’2.

Given a positive ground Datalog™" program P over an alphabet of predicates
XY and an interpretation Z, we say that Z is a minimal model of P if: (i) T
satisfies the first-order translation FO(P) of P (defined in Section 4); (ii) there
is no interpretation Z’ such that Z’ satisfies FO(P) and Z' Cx ¢ Z.

Given a ground Datalog " program P and an interpretation Z for P, the GL-
reduct [19] of P with respect to Z, denoted by GL(P,T), is the positive ground
program obtained from P as follows. For each rule R € P:

1. delete R if there exists a negated atom not r(t) in the body of R such that
tf e rt;
2. delete each negated atom not r(t) in the body of R such that t* & rZ.

Given a ground Datalog™’ program P and an interpretation Z, Z is a stable
model for P iff 7 is a minimal model of GL(P,T).

Definition 2. An interpretation T of Yo U Xr U X is a model for B = (IC,P)
if the following conditions hold:

1. Is usy, satisfies KC;
2. Ix, is a stable model for II(gr(P,C),Is.usy)-

B is called satisfiable if B has at least a model.

We say that a ground atom p(c) is entailed by B iff, for each model Z of B, Z
satisfies p(c).

According to the above semantics, DL predicates are interpreted under the open-
world assumption, while Datalog predicates are interpreted under the closed-world
assumption of disjunctive Datalog (see [37] for a detailed discussion of this aspect).

Notice that, under the above semantics, entailment can be reduced to satisfi-
ability, since it is possible to express constraints in the Datalog program. More
precisely, it is immediate to verify that (K, P) entails p(c) iff (K,P U {<— p(c)})

5 Observe that the notions of minimal model and stable model presented here slightly
differs from the standard ones for Datalog™" presented in Section 3, since they are
expressed in a more general framework in which unique names are not assumed.
Consequently, the interpretation of constants must be considered in the definition of
minimal and stable model.

Integrating Ontologies and Rules: Semantic and Computational Issues 143

is unsatisfiable. In a similar way, it can be seen that conjunctive query answer-
ing can be reduced to satisfiability in DL+log (see [38]). Consequently, in the
following we concentrate on the satisfiability problem in DL +log-KBs.

Ezample 1.(contd.) Let us consider again the knowledge base B = (K, P) re-
ported in Figure 1, where the DL-KB K defines an ontology about persons, and
the disjunctive Datalog program P defines nonmonotonic rules about students.
First, since all rules in P are DL-safe, the rules in P also satisfy the weak
safeness condition of Definition 1: consequently, B is a DL +log-KB.
Then, it can be easily verified that all models for B satisfy the following ground
atoms:

— boy(Paul) (since rule R1 is always applicable for X = Paul and R1 acts like a
default rule, which can be read as follows: if X is a person enrolled in course
cl, then X is a boy, unless we know for sure that X is a girl);

— girl(Mary) (since rule R2 is always applicable for X = Mary)

— boy(Bobd) (since rule R3 is always applicable for X = Bob, and, by rule R4,
the conclusion girl(Bob) is inconsistent with K);

— MALE(Paul) (due to rule R5);

— FEMALE(Mary) (due to rule R4).

Notice that B = FEMALE(Mary), while K (& FEMALE(Mary). In other words,
adding rules has indeed an effect on the conclusions one can draw about DL
predicates. n

Ezample 2.(contd.) Let us consider again the knowledge base B = (I, P) re-
ported in Figure 2.

First, observe that B is a DL+log-KB: in particular, the variable Y in rule
R1 is weakly-safe according to Definition 1 (we also recall that rule R1 is not
DL-safe, since Y does not occur in any Datalog predicate in rule R1).

Then, it can be easily verified that all models for B satisfy the following
formulas:

— RICH(Paul) and RICH(Mary), since the default rule R2 is always applicable
for X = Pauland X = Mary, but not for X = Joe, since the fact scientist(Joe)
holds in every model for B;

— IWANTS-TO-MARRY™ . T (Mary), due to the first axiom of the DL-KB and to
the fact that both RICH(Mary) and UNMARRIED(Mary) hold in every model
of the DL+1og-KB B (while AWANTS-TO-MARRY ™. T (Paul) is not forced by
such axiom to hold in every model of B, because UNMARRIED(Paul) is not
forced to hold in every such model);

— happy(Mary), due to the above conclusions and to the rule R1. Indeed, since
IWANTS-TO-MARRY™ . T (Mary) holds in every model of B, it follows that
in every model there exists a constant x such that WANTS-TO-MARRY
(z, Mary) holds in the model, consequently from rule Rl it follows that
happy(Mary) also holds in the model. "

144 R. Rosati

6.3 Reasoning

In this section we study reasoning in DL +log. In particular, we study satisfiabil-
ity for finite DL +log-KBs (as mentioned above, entailment can be easily reduced
to satisfiability in DL +log).

For ease of exposition, in the following we deal with the case when the DL is
interpreted under the UNA: however, the algorithm can be easily extended to
the case when unique names are not assumed in the DL (in a way analogous to
the technique reported in [37] in the case of DL-safe rules).

We start by introducing Boolean conjunctive queries (CQs) and Boolean
unions of conjunctive queries (UCQs), and the containment problem for such
queries. A Boolean UCQ over a predicate alphabet X' is a first-order sentence of
the form Jx.cong, (x) V...V conj,(x), where x is a tuple of variable symbols and
each conj;(x) is a set of atoms whose predicates are in X and whose arguments
are either constants or variables from «. A Boolean CQ corresponds to a Boolean
UCQ in the case when n = 1.

Given a DL-TBox 7, a Boolean CQ @7 and a Boolean UCQ Q3 over the
alphabet Yo U X'g, Q1 is contained in Qo with respect to T, denoted by 7 |=
Q1 C Qq, iff, for every model Z of 7, if @ is satisfied in Z then Q5 is satisfied in
Z. In the following, we call the problem of deciding 7 = @1 C Q2 the Boolean
CQ/UCQ containment problem.”

Algorithm. Given a program P, we denote by Cp the set of constants occurring
in P.

In the following definition, we assume that a rule R in P has the form ag(x) —
Br(x,y,w),yr(x,y, z), where yr(x,y, z) is the set of DL-atoms occurring in
the body of R (and, of course, Sr(x, y, w) is the set of Datalog atoms in the body
of R), x are the head variables in R, y are the existential variables occurring
both in DL-atoms and in Datalog atoms in R, and z (respectively, w) are the
existential variables of R that only occur in DL-atoms (respectively, Datalog
atoms) in R.

Definition 3. Let B = (K, P) be a DL+log-KB. The DL-grounding of P, de-
noted by gr,(P), is the following set of Boolean CQs:

97,(P) = {vr(c1/x,c2/y,2) | R € P and c1, cz are tuples of constants in Cp}
U
{p(e/x) | p is a DL predicate occurring in a rule head in P
and ¢ is a tuple of constants in Cp}

Notice that gr,(P) constitutes a partial grounding of the conjunctions of DL-
atoms that occur in P with respect to the constants in Cp, since the variables
that only occur in DL-atoms in the body of rules are not replaced by constants
in gr,(P).

" This problem was called ezistential entailment in [28).

Integrating Ontologies and Rules: Semantic and Computational Issues 145

Let G be a set of Boolean CQs. Then, we denote by CQ(G) the Boolean CQ
corresponding to the conjunction of all the Boolean CQs in G, i.e., CQ(G) =
N, ecc - We also denote by UCQ(G) the Boolean UCQ corresponding to the
disjunction of all the Boolean CQs in G, namely UCQ(G) =V ¢ 7.8

Similarly to gr(P,Cp), we define the partial grounding of P on Cp (denoted by
pgr(P,Cp)) as the program obtained from P by grounding with the constants in
Cp all variables except the existential variables of R that only occur in DL-atoms.

Finally, given a partition (G'p,Gx) of gr,(P), we denote by P(Gp,Gn) the
ground Datalog™" program obtained from pgr(P,Cp) by:

deleting all occurrences of the conjunction v from the body of the rules, for
each v € Gp;

deleting each rule in which « occurs in the body, for each v € Gy;

— deleting each rule in which v occurs in the head, for each v € Gp;

deleting all occurrences of the conjunction v from the head of the rules, for
each v € Gn.

Notice that P(Gp,Gy) is a ground Datalog " program over Xp, i.e., no DL
predicate occurs in such a program.

We are now ready to present the algorithm DL +log-SAT for deciding sat-
isfiability of DL+log-KBs. The algorithm is shown in Figure 3. The algorithm
has a very simple structure, since it decides satisfiability by looking for a guess
(Gp,GN) of the Boolean CQs in gr,(P) that is consistent with the DL-KB K
and such that the Datalog™" program P(Gp,G) has a stable model.

Algorithm DL +log-SAT(B)
Input: DL+log-KB B = (K,P) with £ = (T, A)
Output: true if B is satisfiable, false otherwise
begin
if there exists partition (Gp,Gn) of gr,(P)
such that
(a) P(Gp,Gn) has a stable model and
(b) T = CQ(AUGP) CUCQ(GnN)
then return true
else return false
end

Fig. 3. The algorithm DL +log-SAT

Correctness of the algorithm is based on the following property, which relates
consistency of a guess (Gp, G) of Boolean CQs with the problem of containment
of a Boolean CQ in a Boolean UCQ with respect to a DL-TBox.

8 Without loss of generality, we assume that each « in G uses different existential
variable symbols, so that the expression A 4eg Y can be immediately turned into
a Boolean CQ by factoring out all existential quantifications (an analogous simple
transformation is needed for turning UCQ(G) into a Boolean UCQ).

146 R. Rosati

Lemma 1. There exists a model M for K = (T, A) such that every Boolean
CQ in Gp is satisfied in M and every Boolean CQ in Gy is not satisfied in M
if and only if T = CQ(AUGp) CUCQ(GN).

Based on the above lemma, we are able to prove correctness of the algorthm
DL+log-SAT.

Theorem 1. Let B be a DL+log-KB. Then, B is satisfiable iff DL+log-SAT(B)
returns true.

Decidability and complexity. First, from the analysis of the algorithm
DL+1log-SAT presented above, we are able to prove a very general property
that states decidability of reasoning in DL +log whenever the Boolean CQ/UCQ
containment problem is decidable in DL.

Theorem 2. For every description logic DL, satisfiability of DL+log-KBs s
decidable iff Boolean CQ/UCQ containment is decidable in DL.

From the above theorem and from previous results on query answering and query
containment in DLs, we are able to state decidability of reasoning in DL -+log
in the case when DL corresponds to several known DLs. In particular, in the
following we briefly analyze the description logics ALCN'R, SHZQ, and DL-Lite.

First, we observe that, for the description logic ALCN R it is known that Boolean
CQ/UCQ containment is decidable [28], hence reasoning in ALCNR +log-KBs is
decidable.

Theorem 3. Satisfiability of ALCNR+log-KBs is decidable.

Of course, this result implies decidability of adding weakly-safe Datalog ™" rules
to all the DLs that are subsets of ALCNR.

For (a large fragment of) the description logic SHZQ [25], it is known that an-
swering conjunctive queries is decidable (see [32,20]), but decidability of Boolean
CQ/UCQ containment in SHZQ has not been established yet, therefore satis-
fiability in SHZQ+log is still an open problem: however, we conjecture that
Boolean CQ/UCQ containment in SHZQ is decidable as well, and hence that
reasoning in SHZQ+log is decidable.

Finally, for the description logic DL-Lite [8], there are known results about the
complexity of query answering, which allow us to establish the computational
complexity of reasoning in DL-Lite+log for different classes of Datalog programs.
More precisely, the following theorem refers to data complexity of satisfiability,
which in the framework of DL +log corresponds to the analysis of the computa-
tional complexity of the problem when we only consider the size of the ABox A
and of the EDB of P, i.e., the set of facts contained in P. In other words, data
complexity considers the TBox 7 and the rules not corresponding to facts (i.e.,
the IDB) in P as fixed, hence they are not part of the input. Data complexity
is a very significant measure when the size of the data, i.e., the ABox and the
EDB of P, is much larger than the size of the intensional knowledge, i.e., the
TBox and the IDB of P.

Integrating Ontologies and Rules: Semantic and Computational Issues 147

The following results are based on the analysis of the previous algorithms and
on the fact that conjunctive query answering in DL-Lite is in PTIME in data
complexity (actually it is in LOGSPACE) [8].

Theorem 4. Let B= (K, P) be a DL-Lite+log-KB. Then:

— if P is a positive Datalog program, then deciding satisfiability of B is PTIME-
complete with respect to data complexity;

— if P is a positive disjunctive Datalog program, then deciding satisfiability of
B is NP-complete with respect to data complexity;

— if P is an arbitrary Datalog”” program, then deciding satisfiability of B is
X8 -complete with respect to data complexity.

Therefore, in DL-lite, under both semantics, the data complexity does not in-
crease with respect to the data complexity of the Datalog program alone [11]. In
other words, connecting a DL-Lite-KB to a Datalog program does not increase
complexity of reasoning in the size of the data. We also point out that DL-Lite
with arbitrary, non-weakly-safe recursive Datalog rules is undecidable (which
follows from the results in [28,10]).

7 Open Problems

We conclude the paper by pointing out some of the most interesting open prob-
lems in the integration of DLs and rules.

Semantics. A first and crucial issue concerns the semantic account for log-
ical systems integrating Description Logics and rules. In the paper, we have
illustrated the technical problems due to the OWA of DLs and the CWA of non-
monotonic Datalog. However, there is also an orthogonal problem which can be
summarized as follows: what is the “intended” semantics of a system combin-
ing DLs and rules? Research in this field is still far from providing an ultimate
answer to the above question. With respect to this issue, in this paper we have
only claimed that a minimal requirement that an appropriate semantics for such
systems should satisfy is to constitute a “conservative extension” of both the
semantics of DLs and the semantics of disjunctive Datalog.

Expressiveness. Another important problem (which is directly related to the
previous issue) concerns the expressiveness of a language integrating DLs and
rules. In fact, the representational abilities that a system combining DLs and
rules should provide to match “practical” needs are not completely clear.

In this respect, we believe that one of the most important expressive limita-
tions of many of the current approaches to the integration of DLs and rules is the
rigid separation between DL predicates and Datalog predicates. For instance, in
DL+log, since DL predicates have an open interpretation while Datalog predi-
cates have a closed interpretation, it is not possible to express complex pieces
of information in which the same predicate is interpreted in different ways (i.e.,
both under an open-world assumption and under a closed-world assumption) in
different parts of the same knowledge base.

148 R. Rosati

Reasoning. As we have explained in the paper, decidability (and complexity) of
reasoning is a crucial issue in systems combining DLs and rules. In this respect,
there are numerous computational open problems, and the results obtained so far
can be seen as the first, preliminary results towards the identification of general
computational properties for systems combining DLs and rules.

One important general goal in this direction concerns the identification of the
frontier between decidability and undecidability of reasoning with respect to the
semantics and the expressiveness (in particular, the “degree of integration”) of
the formalism combining DLs and rules. In more abstract terms, this corresponds
to analyze the trade-off between the expressiveness and the computational prop-
erties of such formalism, as usual in Knowledge Representation.

With respect to the above general goal, examples of more specific open prob-
lems are the following: (i) it is possible to identify tighter forms of decidable
interaction between DL-KBs and rules, which are able to overcome the limita-
tions of DL +log? (ii) within the interaction between DLs and rules imposed by
the DL+log framework, is it possible to establish more general computational
properties? for instance, is it possible to establish decidability of DL+log for
very expressive DLs (like OWL-DL)?

Implementation. There is still a considerable distance between the current
state of the art in the integration of DLs and rules and the implementation
of effective systems. In many approaches, reasoning techniques have not been
defined yet, and even in the approaches which have addressed the reasoning
problem, the proposed techniques for reasoning in DLs combined with rules have
the main goal of establishing general computational properties (decidability and
worst-case complexity) of the combined language. Therefore, the problem of
turning such techniques into effective and implementable algorithms is still open
and mainly unexplored.

As we have explained in the introduction, an important property towards this
goal is modularity, i.e., the possibility of reducing reasoning in a system combin-
ing a DL component and a rule component to reasoning as “locally” as possible
in the single components. On the other hand, it is clear that this modularity is
in contrast with the representational goal of increasing the interaction between
the DL component and the rule component. So, again, it is necessary to identify
suitable trade-offs between such desiderata.”

Relationship between Rules and Queries. Finally, the relationship between
the integration of DLs and rules and query answering in DLs has not been
fully explored yet. As described in the paper, the two problems are very strictly
related, since queries can in principle be expressed in terms of rules. Therefore,
the known results concerning query answering in DLs could be profitably used
towards the design of an expressive and computationally attractive rule language
for DLs (and vice versa). The DL+log approach presented above constitutes a
first step in this direction.

9 Modular techniques for dealing with the DL-safe integration of DLs and rules are
des